1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"math"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack"
)
// Dgebal balances an n×n matrix A. Balancing consists of two stages, permuting
// and scaling. Both steps are optional and depend on the value of job.
//
// Permuting consists of applying a permutation matrix P such that the matrix
// that results from Pᵀ*A*P takes the upper block triangular form
//
// [ T1 X Y ]
// Pᵀ A P = [ 0 B Z ],
// [ 0 0 T2 ]
//
// where T1 and T2 are upper triangular matrices and B contains at least one
// nonzero off-diagonal element in each row and column. The indices ilo and ihi
// mark the starting and ending columns of the submatrix B. The eigenvalues of A
// isolated in the first 0 to ilo-1 and last ihi+1 to n-1 elements on the
// diagonal can be read off without any roundoff error.
//
// Scaling consists of applying a diagonal similarity transformation D such that
// D^{-1}*B*D has the 1-norm of each row and its corresponding column nearly
// equal. The output matrix is
//
// [ T1 X*D Y ]
// [ 0 inv(D)*B*D inv(D)*Z ].
// [ 0 0 T2 ]
//
// Scaling may reduce the 1-norm of the matrix, and improve the accuracy of
// the computed eigenvalues and/or eigenvectors.
//
// job specifies the operations that will be performed on A.
// If job is lapack.BalanceNone, Dgebal sets scale[i] = 1 for all i and returns ilo=0, ihi=n-1.
// If job is lapack.Permute, only permuting will be done.
// If job is lapack.Scale, only scaling will be done.
// If job is lapack.PermuteScale, both permuting and scaling will be done.
//
// On return, if job is lapack.Permute or lapack.PermuteScale, it will hold that
//
// A[i,j] == 0, for i > j and j ∈ {0, ..., ilo-1, ihi+1, ..., n-1}.
//
// If job is lapack.BalanceNone or lapack.Scale, or if n == 0, it will hold that
//
// ilo == 0 and ihi == n-1.
//
// On return, scale will contain information about the permutations and scaling
// factors applied to A. If π(j) denotes the index of the column interchanged
// with column j, and D[j,j] denotes the scaling factor applied to column j,
// then
//
// scale[j] == π(j), for j ∈ {0, ..., ilo-1, ihi+1, ..., n-1},
// == D[j,j], for j ∈ {ilo, ..., ihi}.
//
// scale must have length equal to n, otherwise Dgebal will panic.
//
// Dgebal is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dgebal(job lapack.BalanceJob, n int, a []float64, lda int, scale []float64) (ilo, ihi int) {
switch {
case job != lapack.BalanceNone && job != lapack.Permute && job != lapack.Scale && job != lapack.PermuteScale:
panic(badBalanceJob)
case n < 0:
panic(nLT0)
case lda < max(1, n):
panic(badLdA)
}
ilo = 0
ihi = n - 1
if n == 0 {
return ilo, ihi
}
if len(scale) != n {
panic(shortScale)
}
if job == lapack.BalanceNone {
for i := range scale {
scale[i] = 1
}
return ilo, ihi
}
if len(a) < (n-1)*lda+n {
panic(shortA)
}
bi := blas64.Implementation()
swapped := true
if job == lapack.Scale {
goto scaling
}
// Permutation to isolate eigenvalues if possible.
//
// Search for rows isolating an eigenvalue and push them down.
for swapped {
swapped = false
rows:
for i := ihi; i >= 0; i-- {
for j := 0; j <= ihi; j++ {
if i == j {
continue
}
if a[i*lda+j] != 0 {
continue rows
}
}
// Row i has only zero off-diagonal elements in the
// block A[ilo:ihi+1,ilo:ihi+1].
scale[ihi] = float64(i)
if i != ihi {
bi.Dswap(ihi+1, a[i:], lda, a[ihi:], lda)
bi.Dswap(n, a[i*lda:], 1, a[ihi*lda:], 1)
}
if ihi == 0 {
scale[0] = 1
return ilo, ihi
}
ihi--
swapped = true
break
}
}
// Search for columns isolating an eigenvalue and push them left.
swapped = true
for swapped {
swapped = false
columns:
for j := ilo; j <= ihi; j++ {
for i := ilo; i <= ihi; i++ {
if i == j {
continue
}
if a[i*lda+j] != 0 {
continue columns
}
}
// Column j has only zero off-diagonal elements in the
// block A[ilo:ihi+1,ilo:ihi+1].
scale[ilo] = float64(j)
if j != ilo {
bi.Dswap(ihi+1, a[j:], lda, a[ilo:], lda)
bi.Dswap(n-ilo, a[j*lda+ilo:], 1, a[ilo*lda+ilo:], 1)
}
swapped = true
ilo++
break
}
}
scaling:
for i := ilo; i <= ihi; i++ {
scale[i] = 1
}
if job == lapack.Permute {
return ilo, ihi
}
// Balance the submatrix in rows ilo to ihi.
const (
// sclfac should be a power of 2 to avoid roundoff errors.
// Elements of scale are restricted to powers of sclfac,
// therefore the matrix will be only nearly balanced.
sclfac = 2
// factor determines the minimum reduction of the row and column
// norms that is considered non-negligible. It must be less than 1.
factor = 0.95
)
sfmin1 := dlamchS / dlamchP
sfmax1 := 1 / sfmin1
sfmin2 := sfmin1 * sclfac
sfmax2 := 1 / sfmin2
// Iterative loop for norm reduction.
var conv bool
for !conv {
conv = true
for i := ilo; i <= ihi; i++ {
c := bi.Dnrm2(ihi-ilo+1, a[ilo*lda+i:], lda)
r := bi.Dnrm2(ihi-ilo+1, a[i*lda+ilo:], 1)
ica := bi.Idamax(ihi+1, a[i:], lda)
ca := math.Abs(a[ica*lda+i])
ira := bi.Idamax(n-ilo, a[i*lda+ilo:], 1)
ra := math.Abs(a[i*lda+ilo+ira])
// Guard against zero c or r due to underflow.
if c == 0 || r == 0 {
continue
}
g := r / sclfac
f := 1.0
s := c + r
for c < g && math.Max(f, math.Max(c, ca)) < sfmax2 && math.Min(r, math.Min(g, ra)) > sfmin2 {
if math.IsNaN(c + f + ca + r + g + ra) {
// Panic if NaN to avoid infinite loop.
panic("lapack: NaN")
}
f *= sclfac
c *= sclfac
ca *= sclfac
g /= sclfac
r /= sclfac
ra /= sclfac
}
g = c / sclfac
for r <= g && math.Max(r, ra) < sfmax2 && math.Min(math.Min(f, c), math.Min(g, ca)) > sfmin2 {
f /= sclfac
c /= sclfac
ca /= sclfac
g /= sclfac
r *= sclfac
ra *= sclfac
}
if c+r >= factor*s {
// Reduction would be negligible.
continue
}
if f < 1 && scale[i] < 1 && f*scale[i] <= sfmin1 {
continue
}
if f > 1 && scale[i] > 1 && scale[i] >= sfmax1/f {
continue
}
// Now balance.
scale[i] *= f
bi.Dscal(n-ilo, 1/f, a[i*lda+ilo:], 1)
bi.Dscal(ihi+1, f, a[i:], lda)
conv = false
}
}
return ilo, ihi
}
|