1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
)
// Dgebrd reduces a general m×n matrix A to upper or lower bidiagonal form B by
// an orthogonal transformation:
//
// Qᵀ * A * P = B.
//
// The diagonal elements of B are stored in d and the off-diagonal elements are stored
// in e. These are additionally stored along the diagonal of A and the off-diagonal
// of A. If m >= n B is an upper-bidiagonal matrix, and if m < n B is a
// lower-bidiagonal matrix.
//
// The remaining elements of A store the data needed to construct Q and P.
// The matrices Q and P are products of elementary reflectors
//
// if m >= n, Q = H_0 * H_1 * ... * H_{n-1},
// P = G_0 * G_1 * ... * G_{n-2},
// if m < n, Q = H_0 * H_1 * ... * H_{m-2},
// P = G_0 * G_1 * ... * G_{m-1},
//
// where
//
// H_i = I - tauQ[i] * v_i * v_iᵀ,
// G_i = I - tauP[i] * u_i * u_iᵀ.
//
// As an example, on exit the entries of A when m = 6, and n = 5
//
// [ d e u1 u1 u1]
// [v1 d e u2 u2]
// [v1 v2 d e u3]
// [v1 v2 v3 d e]
// [v1 v2 v3 v4 d]
// [v1 v2 v3 v4 v5]
//
// and when m = 5, n = 6
//
// [ d u1 u1 u1 u1 u1]
// [ e d u2 u2 u2 u2]
// [v1 e d u3 u3 u3]
// [v1 v2 e d u4 u4]
// [v1 v2 v3 e d u5]
//
// d, tauQ, and tauP must all have length at least min(m,n), and e must have
// length min(m,n) - 1, unless lwork is -1 when there is no check except for
// work which must have a length of at least one.
//
// work is temporary storage, and lwork specifies the usable memory length.
// At minimum, lwork >= max(1,m,n) or be -1 and this function will panic otherwise.
// Dgebrd is blocked decomposition, but the block size is limited
// by the temporary space available. If lwork == -1, instead of performing Dgebrd,
// the optimal work length will be stored into work[0].
//
// Dgebrd is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dgebrd(m, n int, a []float64, lda int, d, e, tauQ, tauP, work []float64, lwork int) {
switch {
case m < 0:
panic(mLT0)
case n < 0:
panic(nLT0)
case lda < max(1, n):
panic(badLdA)
case lwork < max(1, max(m, n)) && lwork != -1:
panic(badLWork)
case len(work) < max(1, lwork):
panic(shortWork)
}
// Quick return if possible.
minmn := min(m, n)
if minmn == 0 {
work[0] = 1
return
}
nb := impl.Ilaenv(1, "DGEBRD", " ", m, n, -1, -1)
lwkopt := (m + n) * nb
if lwork == -1 {
work[0] = float64(lwkopt)
return
}
switch {
case len(a) < (m-1)*lda+n:
panic(shortA)
case len(d) < minmn:
panic(shortD)
case len(e) < minmn-1:
panic(shortE)
case len(tauQ) < minmn:
panic(shortTauQ)
case len(tauP) < minmn:
panic(shortTauP)
}
nx := minmn
ws := max(m, n)
if 1 < nb && nb < minmn {
// At least one blocked operation can be done.
// Get the crossover point nx.
nx = max(nb, impl.Ilaenv(3, "DGEBRD", " ", m, n, -1, -1))
// Determine when to switch from blocked to unblocked code.
if nx < minmn {
// At least one blocked operation will be done.
ws = (m + n) * nb
if lwork < ws {
// Not enough work space for the optimal nb,
// consider using a smaller block size.
nbmin := impl.Ilaenv(2, "DGEBRD", " ", m, n, -1, -1)
if lwork >= (m+n)*nbmin {
// Enough work space for minimum block size.
nb = lwork / (m + n)
} else {
nb = minmn
nx = minmn
}
}
}
}
bi := blas64.Implementation()
ldworkx := nb
ldworky := nb
var i int
for i = 0; i < minmn-nx; i += nb {
// Reduce rows and columns i:i+nb to bidiagonal form and return
// the matrices X and Y which are needed to update the unreduced
// part of the matrix.
// X is stored in the first m rows of work, y in the next rows.
x := work[:m*ldworkx]
y := work[m*ldworkx:]
impl.Dlabrd(m-i, n-i, nb, a[i*lda+i:], lda,
d[i:], e[i:], tauQ[i:], tauP[i:],
x, ldworkx, y, ldworky)
// Update the trailing submatrix A[i+nb:m,i+nb:n], using an update
// of the form A := A - V*Y**T - X*U**T
bi.Dgemm(blas.NoTrans, blas.Trans, m-i-nb, n-i-nb, nb,
-1, a[(i+nb)*lda+i:], lda, y[nb*ldworky:], ldworky,
1, a[(i+nb)*lda+i+nb:], lda)
bi.Dgemm(blas.NoTrans, blas.NoTrans, m-i-nb, n-i-nb, nb,
-1, x[nb*ldworkx:], ldworkx, a[i*lda+i+nb:], lda,
1, a[(i+nb)*lda+i+nb:], lda)
// Copy diagonal and off-diagonal elements of B back into A.
if m >= n {
for j := i; j < i+nb; j++ {
a[j*lda+j] = d[j]
a[j*lda+j+1] = e[j]
}
} else {
for j := i; j < i+nb; j++ {
a[j*lda+j] = d[j]
a[(j+1)*lda+j] = e[j]
}
}
}
// Use unblocked code to reduce the remainder of the matrix.
impl.Dgebd2(m-i, n-i, a[i*lda+i:], lda, d[i:], e[i:], tauQ[i:], tauP[i:], work)
work[0] = float64(ws)
}
|