File: dgehrd.go

package info (click to toggle)
golang-gonum-v1-gonum 0.15.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,792 kB
  • sloc: asm: 6,252; fortran: 5,271; sh: 377; ruby: 211; makefile: 98
file content (202 lines) | stat: -rw-r--r-- 6,043 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package gonum

import (
	"gonum.org/v1/gonum/blas"
	"gonum.org/v1/gonum/blas/blas64"
	"gonum.org/v1/gonum/lapack"
)

// Dgehrd reduces a block of a real n×n general matrix A to upper Hessenberg
// form H by an orthogonal similarity transformation Qᵀ * A * Q = H.
//
// The matrix Q is represented as a product of (ihi-ilo) elementary
// reflectors
//
//	Q = H_{ilo} H_{ilo+1} ... H_{ihi-1}.
//
// Each H_i has the form
//
//	H_i = I - tau[i] * v * vᵀ
//
// where v is a real vector with v[0:i+1] = 0, v[i+1] = 1 and v[ihi+1:n] = 0.
// v[i+2:ihi+1] is stored on exit in A[i+2:ihi+1,i].
//
// On entry, a contains the n×n general matrix to be reduced. On return, the
// upper triangle and the first subdiagonal of A will be overwritten with the
// upper Hessenberg matrix H, and the elements below the first subdiagonal, with
// the slice tau, represent the orthogonal matrix Q as a product of elementary
// reflectors.
//
// The contents of a are illustrated by the following example, with n = 7, ilo =
// 1 and ihi = 5.
// On entry,
//
//	[ a   a   a   a   a   a   a ]
//	[     a   a   a   a   a   a ]
//	[     a   a   a   a   a   a ]
//	[     a   a   a   a   a   a ]
//	[     a   a   a   a   a   a ]
//	[     a   a   a   a   a   a ]
//	[                         a ]
//
// on return,
//
//	[ a   a   h   h   h   h   a ]
//	[     a   h   h   h   h   a ]
//	[     h   h   h   h   h   h ]
//	[     v1  h   h   h   h   h ]
//	[     v1  v2  h   h   h   h ]
//	[     v1  v2  v3  h   h   h ]
//	[                         a ]
//
// where a denotes an element of the original matrix A, h denotes a
// modified element of the upper Hessenberg matrix H, and vi denotes an
// element of the vector defining H_i.
//
// ilo and ihi determine the block of A that will be reduced to upper Hessenberg
// form. It must hold that 0 <= ilo <= ihi < n if n > 0, and ilo == 0 and ihi ==
// -1 if n == 0, otherwise Dgehrd will panic.
//
// On return, tau will contain the scalar factors of the elementary reflectors.
// Elements tau[:ilo] and tau[ihi:] will be set to zero. tau must have length
// equal to n-1 if n > 0, otherwise Dgehrd will panic.
//
// work must have length at least lwork and lwork must be at least max(1,n),
// otherwise Dgehrd will panic. On return, work[0] contains the optimal value of
// lwork.
//
// If lwork == -1, instead of performing Dgehrd, only the optimal value of lwork
// will be stored in work[0].
//
// Dgehrd is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dgehrd(n, ilo, ihi int, a []float64, lda int, tau, work []float64, lwork int) {
	switch {
	case n < 0:
		panic(nLT0)
	case ilo < 0 || max(0, n-1) < ilo:
		panic(badIlo)
	case ihi < min(ilo, n-1) || n <= ihi:
		panic(badIhi)
	case lda < max(1, n):
		panic(badLdA)
	case lwork < max(1, n) && lwork != -1:
		panic(badLWork)
	case len(work) < lwork:
		panic(shortWork)
	}

	// Quick return if possible.
	if n == 0 {
		work[0] = 1
		return
	}

	const (
		nbmax = 64
		ldt   = nbmax + 1
		tsize = ldt * nbmax
	)
	// Compute the workspace requirements.
	nb := min(nbmax, impl.Ilaenv(1, "DGEHRD", " ", n, ilo, ihi, -1))
	lwkopt := n*nb + tsize
	if lwork == -1 {
		work[0] = float64(lwkopt)
		return
	}

	if len(a) < (n-1)*lda+n {
		panic(shortA)
	}
	if len(tau) != n-1 {
		panic(badLenTau)
	}

	// Set tau[:ilo] and tau[ihi:] to zero.
	for i := 0; i < ilo; i++ {
		tau[i] = 0
	}
	for i := ihi; i < n-1; i++ {
		tau[i] = 0
	}

	// Quick return if possible.
	nh := ihi - ilo + 1
	if nh <= 1 {
		work[0] = 1
		return
	}

	// Determine the block size.
	nbmin := 2
	var nx int
	if 1 < nb && nb < nh {
		// Determine when to cross over from blocked to unblocked code
		// (last block is always handled by unblocked code).
		nx = max(nb, impl.Ilaenv(3, "DGEHRD", " ", n, ilo, ihi, -1))
		if nx < nh {
			// Determine if workspace is large enough for blocked code.
			if lwork < n*nb+tsize {
				// Not enough workspace to use optimal nb:
				// determine the minimum value of nb, and reduce
				// nb or force use of unblocked code.
				nbmin = max(2, impl.Ilaenv(2, "DGEHRD", " ", n, ilo, ihi, -1))
				if lwork >= n*nbmin+tsize {
					nb = (lwork - tsize) / n
				} else {
					nb = 1
				}
			}
		}
	}
	ldwork := nb // work is used as an n×nb matrix.

	var i int
	if nb < nbmin || nh <= nb {
		// Use unblocked code below.
		i = ilo
	} else {
		// Use blocked code.
		bi := blas64.Implementation()
		iwt := n * nb // Size of the matrix Y and index where the matrix T starts in work.
		for i = ilo; i < ihi-nx; i += nb {
			ib := min(nb, ihi-i)

			// Reduce columns [i:i+ib] to Hessenberg form, returning the
			// matrices V and T of the block reflector H = I - V*T*Vᵀ
			// which performs the reduction, and also the matrix Y = A*V*T.
			impl.Dlahr2(ihi+1, i+1, ib, a[i:], lda, tau[i:], work[iwt:], ldt, work, ldwork)

			// Apply the block reflector H to A[:ihi+1,i+ib:ihi+1] from the
			// right, computing  A := A - Y * Vᵀ. V[i+ib,i+ib-1] must be set
			// to 1.
			ei := a[(i+ib)*lda+i+ib-1]
			a[(i+ib)*lda+i+ib-1] = 1
			bi.Dgemm(blas.NoTrans, blas.Trans, ihi+1, ihi-i-ib+1, ib,
				-1, work, ldwork,
				a[(i+ib)*lda+i:], lda,
				1, a[i+ib:], lda)
			a[(i+ib)*lda+i+ib-1] = ei

			// Apply the block reflector H to A[0:i+1,i+1:i+ib-1] from the
			// right.
			bi.Dtrmm(blas.Right, blas.Lower, blas.Trans, blas.Unit, i+1, ib-1,
				1, a[(i+1)*lda+i:], lda, work, ldwork)
			for j := 0; j <= ib-2; j++ {
				bi.Daxpy(i+1, -1, work[j:], ldwork, a[i+j+1:], lda)
			}

			// Apply the block reflector H to A[i+1:ihi+1,i+ib:n] from the
			// left.
			impl.Dlarfb(blas.Left, blas.Trans, lapack.Forward, lapack.ColumnWise,
				ihi-i, n-i-ib, ib,
				a[(i+1)*lda+i:], lda, work[iwt:], ldt, a[(i+1)*lda+i+ib:], lda, work, ldwork)
		}
	}
	// Use unblocked code to reduce the rest of the matrix.
	impl.Dgehd2(n, i, ihi, a, lda, tau, work)
	work[0] = float64(lwkopt)
}