1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack"
)
// Dgehrd reduces a block of a real n×n general matrix A to upper Hessenberg
// form H by an orthogonal similarity transformation Qᵀ * A * Q = H.
//
// The matrix Q is represented as a product of (ihi-ilo) elementary
// reflectors
//
// Q = H_{ilo} H_{ilo+1} ... H_{ihi-1}.
//
// Each H_i has the form
//
// H_i = I - tau[i] * v * vᵀ
//
// where v is a real vector with v[0:i+1] = 0, v[i+1] = 1 and v[ihi+1:n] = 0.
// v[i+2:ihi+1] is stored on exit in A[i+2:ihi+1,i].
//
// On entry, a contains the n×n general matrix to be reduced. On return, the
// upper triangle and the first subdiagonal of A will be overwritten with the
// upper Hessenberg matrix H, and the elements below the first subdiagonal, with
// the slice tau, represent the orthogonal matrix Q as a product of elementary
// reflectors.
//
// The contents of a are illustrated by the following example, with n = 7, ilo =
// 1 and ihi = 5.
// On entry,
//
// [ a a a a a a a ]
// [ a a a a a a ]
// [ a a a a a a ]
// [ a a a a a a ]
// [ a a a a a a ]
// [ a a a a a a ]
// [ a ]
//
// on return,
//
// [ a a h h h h a ]
// [ a h h h h a ]
// [ h h h h h h ]
// [ v1 h h h h h ]
// [ v1 v2 h h h h ]
// [ v1 v2 v3 h h h ]
// [ a ]
//
// where a denotes an element of the original matrix A, h denotes a
// modified element of the upper Hessenberg matrix H, and vi denotes an
// element of the vector defining H_i.
//
// ilo and ihi determine the block of A that will be reduced to upper Hessenberg
// form. It must hold that 0 <= ilo <= ihi < n if n > 0, and ilo == 0 and ihi ==
// -1 if n == 0, otherwise Dgehrd will panic.
//
// On return, tau will contain the scalar factors of the elementary reflectors.
// Elements tau[:ilo] and tau[ihi:] will be set to zero. tau must have length
// equal to n-1 if n > 0, otherwise Dgehrd will panic.
//
// work must have length at least lwork and lwork must be at least max(1,n),
// otherwise Dgehrd will panic. On return, work[0] contains the optimal value of
// lwork.
//
// If lwork == -1, instead of performing Dgehrd, only the optimal value of lwork
// will be stored in work[0].
//
// Dgehrd is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dgehrd(n, ilo, ihi int, a []float64, lda int, tau, work []float64, lwork int) {
switch {
case n < 0:
panic(nLT0)
case ilo < 0 || max(0, n-1) < ilo:
panic(badIlo)
case ihi < min(ilo, n-1) || n <= ihi:
panic(badIhi)
case lda < max(1, n):
panic(badLdA)
case lwork < max(1, n) && lwork != -1:
panic(badLWork)
case len(work) < lwork:
panic(shortWork)
}
// Quick return if possible.
if n == 0 {
work[0] = 1
return
}
const (
nbmax = 64
ldt = nbmax + 1
tsize = ldt * nbmax
)
// Compute the workspace requirements.
nb := min(nbmax, impl.Ilaenv(1, "DGEHRD", " ", n, ilo, ihi, -1))
lwkopt := n*nb + tsize
if lwork == -1 {
work[0] = float64(lwkopt)
return
}
if len(a) < (n-1)*lda+n {
panic(shortA)
}
if len(tau) != n-1 {
panic(badLenTau)
}
// Set tau[:ilo] and tau[ihi:] to zero.
for i := 0; i < ilo; i++ {
tau[i] = 0
}
for i := ihi; i < n-1; i++ {
tau[i] = 0
}
// Quick return if possible.
nh := ihi - ilo + 1
if nh <= 1 {
work[0] = 1
return
}
// Determine the block size.
nbmin := 2
var nx int
if 1 < nb && nb < nh {
// Determine when to cross over from blocked to unblocked code
// (last block is always handled by unblocked code).
nx = max(nb, impl.Ilaenv(3, "DGEHRD", " ", n, ilo, ihi, -1))
if nx < nh {
// Determine if workspace is large enough for blocked code.
if lwork < n*nb+tsize {
// Not enough workspace to use optimal nb:
// determine the minimum value of nb, and reduce
// nb or force use of unblocked code.
nbmin = max(2, impl.Ilaenv(2, "DGEHRD", " ", n, ilo, ihi, -1))
if lwork >= n*nbmin+tsize {
nb = (lwork - tsize) / n
} else {
nb = 1
}
}
}
}
ldwork := nb // work is used as an n×nb matrix.
var i int
if nb < nbmin || nh <= nb {
// Use unblocked code below.
i = ilo
} else {
// Use blocked code.
bi := blas64.Implementation()
iwt := n * nb // Size of the matrix Y and index where the matrix T starts in work.
for i = ilo; i < ihi-nx; i += nb {
ib := min(nb, ihi-i)
// Reduce columns [i:i+ib] to Hessenberg form, returning the
// matrices V and T of the block reflector H = I - V*T*Vᵀ
// which performs the reduction, and also the matrix Y = A*V*T.
impl.Dlahr2(ihi+1, i+1, ib, a[i:], lda, tau[i:], work[iwt:], ldt, work, ldwork)
// Apply the block reflector H to A[:ihi+1,i+ib:ihi+1] from the
// right, computing A := A - Y * Vᵀ. V[i+ib,i+ib-1] must be set
// to 1.
ei := a[(i+ib)*lda+i+ib-1]
a[(i+ib)*lda+i+ib-1] = 1
bi.Dgemm(blas.NoTrans, blas.Trans, ihi+1, ihi-i-ib+1, ib,
-1, work, ldwork,
a[(i+ib)*lda+i:], lda,
1, a[i+ib:], lda)
a[(i+ib)*lda+i+ib-1] = ei
// Apply the block reflector H to A[0:i+1,i+1:i+ib-1] from the
// right.
bi.Dtrmm(blas.Right, blas.Lower, blas.Trans, blas.Unit, i+1, ib-1,
1, a[(i+1)*lda+i:], lda, work, ldwork)
for j := 0; j <= ib-2; j++ {
bi.Daxpy(i+1, -1, work[j:], ldwork, a[i+j+1:], lda)
}
// Apply the block reflector H to A[i+1:ihi+1,i+ib:n] from the
// left.
impl.Dlarfb(blas.Left, blas.Trans, lapack.Forward, lapack.ColumnWise,
ihi-i, n-i-ib, ib,
a[(i+1)*lda+i:], lda, work[iwt:], ldt, a[(i+1)*lda+i+ib:], lda, work, ldwork)
}
}
// Use unblocked code to reduce the rest of the matrix.
impl.Dgehd2(n, i, ihi, a, lda, tau, work)
work[0] = float64(lwkopt)
}
|