File: dgeql2.go

package info (click to toggle)
golang-gonum-v1-gonum 0.15.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,792 kB
  • sloc: asm: 6,252; fortran: 5,271; sh: 377; ruby: 211; makefile: 98
file content (67 lines) | stat: -rw-r--r-- 1,741 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package gonum

import "gonum.org/v1/gonum/blas"

// Dgeql2 computes the QL factorization of the m×n matrix A. That is, Dgeql2
// computes Q and L such that
//
//	A = Q * L
//
// where Q is an m×m orthonormal matrix and L is a lower trapezoidal matrix.
//
// Q is represented as a product of elementary reflectors,
//
//	Q = H_{k-1} * ... * H_1 * H_0
//
// where k = min(m,n) and each H_i has the form
//
//	H_i = I - tau[i] * v_i * v_iᵀ
//
// Vector v_i has v[m-k+i+1:m] = 0, v[m-k+i] = 1, and v[:m-k+i+1] is stored on
// exit in A[0:m-k+i-1, n-k+i].
//
// tau must have length at least min(m,n), and Dgeql2 will panic otherwise.
//
// work is temporary memory storage and must have length at least n.
//
// Dgeql2 is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dgeql2(m, n int, a []float64, lda int, tau, work []float64) {
	switch {
	case m < 0:
		panic(mLT0)
	case n < 0:
		panic(nLT0)
	case lda < max(1, n):
		panic(badLdA)
	}

	// Quick return if possible.
	k := min(m, n)
	if k == 0 {
		return
	}

	switch {
	case len(a) < (m-1)*lda+n:
		panic(shortA)
	case len(tau) < k:
		panic(shortTau)
	case len(work) < n:
		panic(shortWork)
	}

	var aii float64
	for i := k - 1; i >= 0; i-- {
		// Generate elementary reflector H_i to annihilate A[0:m-k+i-1, n-k+i].
		aii, tau[i] = impl.Dlarfg(m-k+i+1, a[(m-k+i)*lda+n-k+i], a[n-k+i:], lda)

		// Apply H_i to A[0:m-k+i, 0:n-k+i-1] from the left.
		a[(m-k+i)*lda+n-k+i] = 1
		impl.Dlarf(blas.Left, m-k+i+1, n-k+i, a[n-k+i:], lda, tau[i], a, lda, work)
		a[(m-k+i)*lda+n-k+i] = aii
	}
}