1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
|
// Copyright ©2021 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import "gonum.org/v1/gonum/blas"
// Dgesv computes the solution to a real system of linear equations
//
// A * X = B
//
// where A is an n×n matrix and X and B are n×nrhs matrices.
//
// The LU decomposition with partial pivoting and row interchanges is used to
// factor A as
//
// A = P * L * U
//
// where P is a permutation matrix, L is unit lower triangular, and U is upper
// triangular. On return, the factors L and U are stored in a; the unit diagonal
// elements of L are not stored. The row pivot indices that define the
// permutation matrix P are stored in ipiv.
//
// The factored form of A is then used to solve the system of equations A * X =
// B. On entry, b contains the right hand side matrix B. On return, if ok is
// true, b contains the solution matrix X.
func (impl Implementation) Dgesv(n, nrhs int, a []float64, lda int, ipiv []int, b []float64, ldb int) (ok bool) {
switch {
case n < 0:
panic(nLT0)
case nrhs < 0:
panic(nrhsLT0)
case lda < max(1, n):
panic(badLdA)
case ldb < max(1, nrhs):
panic(badLdB)
}
// Quick return if possible.
if n == 0 || nrhs == 0 {
return true
}
switch {
case len(a) < (n-1)*lda+n:
panic(shortAB)
case len(ipiv) != n:
panic(badLenIpiv)
case len(b) < (n-1)*ldb+nrhs:
panic(shortB)
}
ok = impl.Dgetrf(n, n, a, lda, ipiv)
if ok {
impl.Dgetrs(blas.NoTrans, n, nrhs, a, lda, ipiv, b, ldb)
}
return ok
}
|