1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/lapack"
)
// Dhseqr computes the eigenvalues of an n×n Hessenberg matrix H and,
// optionally, the matrices T and Z from the Schur decomposition
//
// H = Z T Zᵀ,
//
// where T is an n×n upper quasi-triangular matrix (the Schur form), and Z is
// the n×n orthogonal matrix of Schur vectors.
//
// Optionally Z may be postmultiplied into an input orthogonal matrix Q so that
// this routine can give the Schur factorization of a matrix A which has been
// reduced to the Hessenberg form H by the orthogonal matrix Q:
//
// A = Q H Qᵀ = (QZ) T (QZ)ᵀ.
//
// If job == lapack.EigenvaluesOnly, only the eigenvalues will be computed.
// If job == lapack.EigenvaluesAndSchur, the eigenvalues and the Schur form T will
// be computed.
// For other values of job Dhseqr will panic.
//
// If compz == lapack.SchurNone, no Schur vectors will be computed and Z will not be
// referenced.
// If compz == lapack.SchurHess, on return Z will contain the matrix of Schur
// vectors of H.
// If compz == lapack.SchurOrig, on entry z is assumed to contain the orthogonal
// matrix Q that is the identity except for the submatrix
// Q[ilo:ihi+1,ilo:ihi+1]. On return z will be updated to the product Q*Z.
//
// ilo and ihi determine the block of H on which Dhseqr operates. It is assumed
// that H is already upper triangular in rows and columns [0:ilo] and [ihi+1:n],
// although it will be only checked that the block is isolated, that is,
//
// ilo == 0 or H[ilo,ilo-1] == 0,
// ihi == n-1 or H[ihi+1,ihi] == 0,
//
// and Dhseqr will panic otherwise. ilo and ihi are typically set by a previous
// call to Dgebal, otherwise they should be set to 0 and n-1, respectively. It
// must hold that
//
// 0 <= ilo <= ihi < n if n > 0,
// ilo == 0 and ihi == -1 if n == 0.
//
// wr and wi must have length n.
//
// work must have length at least lwork and lwork must be at least max(1,n)
// otherwise Dhseqr will panic. The minimum lwork delivers very good and
// sometimes optimal performance, although lwork as large as 11*n may be
// required. On return, work[0] will contain the optimal value of lwork.
//
// If lwork is -1, instead of performing Dhseqr, the function only estimates the
// optimal workspace size and stores it into work[0]. Neither h nor z are
// accessed.
//
// unconverged indicates whether Dhseqr computed all the eigenvalues.
//
// If unconverged == 0, all the eigenvalues have been computed and their real
// and imaginary parts will be stored on return in wr and wi, respectively. If
// two eigenvalues are computed as a complex conjugate pair, they are stored in
// consecutive elements of wr and wi, say the i-th and (i+1)th, with wi[i] > 0
// and wi[i+1] < 0.
//
// If unconverged == 0 and job == lapack.EigenvaluesAndSchur, on return H will
// contain the upper quasi-triangular matrix T from the Schur decomposition (the
// Schur form). 2×2 diagonal blocks (corresponding to complex conjugate pairs of
// eigenvalues) will be returned in standard form, with
//
// H[i,i] == H[i+1,i+1],
//
// and
//
// H[i+1,i]*H[i,i+1] < 0.
//
// The eigenvalues will be stored in wr and wi in the same order as on the
// diagonal of the Schur form returned in H, with
//
// wr[i] = H[i,i],
//
// and, if H[i:i+2,i:i+2] is a 2×2 diagonal block,
//
// wi[i] = sqrt(-H[i+1,i]*H[i,i+1]),
// wi[i+1] = -wi[i].
//
// If unconverged == 0 and job == lapack.EigenvaluesOnly, the contents of h
// on return is unspecified.
//
// If unconverged > 0, some eigenvalues have not converged, and the blocks
// [0:ilo] and [unconverged:n] of wr and wi will contain those eigenvalues which
// have been successfully computed. Failures are rare.
//
// If unconverged > 0 and job == lapack.EigenvaluesOnly, on return the
// remaining unconverged eigenvalues are the eigenvalues of the upper Hessenberg
// matrix H[ilo:unconverged,ilo:unconverged].
//
// If unconverged > 0 and job == lapack.EigenvaluesAndSchur, then on
// return
//
// (initial H) U = U (final H), (*)
//
// where U is an orthogonal matrix. The final H is upper Hessenberg and
// H[unconverged:ihi+1,unconverged:ihi+1] is upper quasi-triangular.
//
// If unconverged > 0 and compz == lapack.SchurOrig, then on return
//
// (final Z) = (initial Z) U,
//
// where U is the orthogonal matrix in (*) regardless of the value of job.
//
// If unconverged > 0 and compz == lapack.SchurHess, then on return
//
// (final Z) = U,
//
// where U is the orthogonal matrix in (*) regardless of the value of job.
//
// References:
//
// [1] R. Byers. LAPACK 3.1 xHSEQR: Tuning and Implementation Notes on the
// Small Bulge Multi-Shift QR Algorithm with Aggressive Early Deflation.
// LAPACK Working Note 187 (2007)
// URL: http://www.netlib.org/lapack/lawnspdf/lawn187.pdf
// [2] K. Braman, R. Byers, R. Mathias. The Multishift QR Algorithm. Part I:
// Maintaining Well-Focused Shifts and Level 3 Performance. SIAM J. Matrix
// Anal. Appl. 23(4) (2002), pp. 929—947
// URL: http://dx.doi.org/10.1137/S0895479801384573
// [3] K. Braman, R. Byers, R. Mathias. The Multishift QR Algorithm. Part II:
// Aggressive Early Deflation. SIAM J. Matrix Anal. Appl. 23(4) (2002), pp. 948—973
// URL: http://dx.doi.org/10.1137/S0895479801384585
//
// Dhseqr is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dhseqr(job lapack.SchurJob, compz lapack.SchurComp, n, ilo, ihi int, h []float64, ldh int, wr, wi []float64, z []float64, ldz int, work []float64, lwork int) (unconverged int) {
wantt := job == lapack.EigenvaluesAndSchur
wantz := compz == lapack.SchurHess || compz == lapack.SchurOrig
switch {
case job != lapack.EigenvaluesOnly && job != lapack.EigenvaluesAndSchur:
panic(badSchurJob)
case compz != lapack.SchurNone && compz != lapack.SchurHess && compz != lapack.SchurOrig:
panic(badSchurComp)
case n < 0:
panic(nLT0)
case ilo < 0 || max(0, n-1) < ilo:
panic(badIlo)
case ihi < min(ilo, n-1) || n <= ihi:
panic(badIhi)
case ldh < max(1, n):
panic(badLdH)
case ldz < 1, wantz && ldz < n:
panic(badLdZ)
case lwork < max(1, n) && lwork != -1:
panic(badLWork)
case len(work) < max(1, lwork):
panic(shortWork)
}
// Quick return if possible.
if n == 0 {
work[0] = 1
return 0
}
// Quick return in case of a workspace query.
if lwork == -1 {
impl.Dlaqr04(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, ilo, ihi, z, ldz, work, -1, 1)
work[0] = math.Max(float64(n), work[0])
return 0
}
switch {
case len(h) < (n-1)*ldh+n:
panic(shortH)
case wantz && len(z) < (n-1)*ldz+n:
panic(shortZ)
case len(wr) < n:
panic(shortWr)
case len(wi) < n:
panic(shortWi)
}
const (
// Matrices of order ntiny or smaller must be processed by
// Dlahqr because of insufficient subdiagonal scratch space.
// This is a hard limit.
ntiny = 15
// nl is the size of a local workspace to help small matrices
// through a rare Dlahqr failure. nl > ntiny is required and
// nl <= nmin = Ilaenv(ispec=12,...) is recommended (the default
// value of nmin is 75). Using nl = 49 allows up to six
// simultaneous shifts and a 16×16 deflation window.
nl = 49
)
// Copy eigenvalues isolated by Dgebal.
for i := 0; i < ilo; i++ {
wr[i] = h[i*ldh+i]
wi[i] = 0
}
for i := ihi + 1; i < n; i++ {
wr[i] = h[i*ldh+i]
wi[i] = 0
}
// Initialize Z to identity matrix if requested.
if compz == lapack.SchurHess {
impl.Dlaset(blas.All, n, n, 0, 1, z, ldz)
}
// Quick return if possible.
if ilo == ihi {
wr[ilo] = h[ilo*ldh+ilo]
wi[ilo] = 0
return 0
}
// Dlahqr/Dlaqr04 crossover point.
nmin := impl.Ilaenv(12, "DHSEQR", string(job)+string(compz), n, ilo, ihi, lwork)
nmin = max(ntiny, nmin)
if n > nmin {
// Dlaqr0 for big matrices.
unconverged = impl.Dlaqr04(wantt, wantz, n, ilo, ihi, h, ldh, wr[:ihi+1], wi[:ihi+1],
ilo, ihi, z, ldz, work, lwork, 1)
} else {
// Dlahqr for small matrices.
unconverged = impl.Dlahqr(wantt, wantz, n, ilo, ihi, h, ldh, wr[:ihi+1], wi[:ihi+1],
ilo, ihi, z, ldz)
if unconverged > 0 {
// A rare Dlahqr failure! Dlaqr04 sometimes succeeds
// when Dlahqr fails.
kbot := unconverged
if n >= nl {
// Larger matrices have enough subdiagonal
// scratch space to call Dlaqr04 directly.
unconverged = impl.Dlaqr04(wantt, wantz, n, ilo, kbot, h, ldh,
wr[:ihi+1], wi[:ihi+1], ilo, ihi, z, ldz, work, lwork, 1)
} else {
// Tiny matrices don't have enough subdiagonal
// scratch space to benefit from Dlaqr04. Hence,
// tiny matrices must be copied into a larger
// array before calling Dlaqr04.
var hl [nl * nl]float64
impl.Dlacpy(blas.All, n, n, h, ldh, hl[:], nl)
impl.Dlaset(blas.All, nl, nl-n, 0, 0, hl[n:], nl)
var workl [nl]float64
unconverged = impl.Dlaqr04(wantt, wantz, nl, ilo, kbot, hl[:], nl,
wr[:ihi+1], wi[:ihi+1], ilo, ihi, z, ldz, workl[:], nl, 1)
work[0] = workl[0]
if wantt || unconverged > 0 {
impl.Dlacpy(blas.All, n, n, hl[:], nl, h, ldh)
}
}
}
}
// Zero out under the first subdiagonal, if necessary.
if (wantt || unconverged > 0) && n > 2 {
impl.Dlaset(blas.Lower, n-2, n-2, 0, 0, h[2*ldh:], ldh)
}
work[0] = math.Max(float64(n), work[0])
return unconverged
}
|