1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
// Copyright ©2021 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import "math"
// Dlag2 computes the eigenvalues of a 2×2 generalized eigenvalue problem
//
// A - w*B
//
// where B is an upper triangular matrix.
//
// Dlag2 uses scaling as necessary to avoid over-/underflow. Scaling results in
// a modified eigenvalue problem
//
// s*A - w*B
//
// where s is a non-negative scaling factor chosen so that w, w*B, and s*A do
// not overflow and, if possible, do not underflow, either.
//
// scale1 and scale2 are used to avoid over-/underflow in the eigenvalue
// equation which defines the first and second eigenvalue respectively. Note
// that scale1 and scale2 may be zero or less than the underflow threshold if
// the corresponding exact eigenvalue is sufficiently large.
//
// If the eigenvalues are real, then:
// - wi is zero,
// - the eigenvalues are wr1/scale1 and wr2/scale2.
//
// If the eigenvalues are complex, then:
// - wi is non-negative,
// - the eigenvalues are (wr1 ± wi*i)/scale1,
// - wr1 = wr2,
// - scale1 = scale2.
//
// Dlag2 assumes that the one-norm of A and B is less than 1/dlamchS. Entries of
// A less than sqrt(dlamchS)*norm(A) are subject to being treated as zero. The
// diagonals of B should be at least sqrt(dlamchS) times the largest element of
// B (in absolute value); if a diagonal is smaller than that, then
// ±sqrt(dlamchS) will be used instead of that diagonal.
//
// Dlag2 is an internal routine. It is exported for testing purposes.
func (Implementation) Dlag2(a []float64, lda int, b []float64, ldb int) (scale1, scale2, wr1, wr2, wi float64) {
switch {
case lda < 2:
panic(badLdA)
case ldb < 2:
panic(badLdB)
case len(a) < lda+2:
panic(shortA)
case len(b) < ldb+2:
panic(shortB)
}
const (
safmin = dlamchS
safmax = 1 / safmin
fuzzy1 = 1 + 1e-5
)
rtmin := math.Sqrt(safmin)
rtmax := 1 / rtmin
// Scale A.
anorm := math.Max(math.Abs(a[0])+math.Abs(a[lda]),
math.Abs(a[1])+math.Abs(a[lda+1]))
anorm = math.Max(anorm, safmin)
ascale := 1 / anorm
a11 := ascale * a[0]
a21 := ascale * a[lda]
a12 := ascale * a[1]
a22 := ascale * a[lda+1]
// Perturb B if necessary to insure non-singularity.
b11 := b[0]
b12 := b[1]
b22 := b[ldb+1]
bmin := rtmin * math.Max(math.Max(math.Abs(b11), math.Abs(b12)),
math.Max(math.Abs(b22), rtmin))
if math.Abs(b11) < bmin {
b11 = math.Copysign(bmin, b11)
}
if math.Abs(b22) < bmin {
b22 = math.Copysign(bmin, b22)
}
// Scale B.
bnorm := math.Max(math.Max(math.Abs(b11), math.Abs(b12)+math.Abs(b22)), safmin)
bsize := math.Max(math.Abs(b11), math.Abs(b22))
bscale := 1 / bsize
b11 *= bscale
b12 *= bscale
b22 *= bscale
// Compute larger eigenvalue by method described by C. van Loan.
var (
as12, abi22 float64
pp, qq, shift float64
)
binv11 := 1 / b11
binv22 := 1 / b22
s1 := a11 * binv11
s2 := a22 * binv22
// AS is A shifted by -shift*B.
if math.Abs(s1) <= math.Abs(s2) {
shift = s1
as12 = a12 - shift*b12
as22 := a22 - shift*b22
ss := a21 * (binv11 * binv22)
abi22 = as22*binv22 - ss*b12
pp = 0.5 * abi22
qq = ss * as12
} else {
shift = s2
as12 = a12 - shift*b12
as11 := a11 - shift*b11
ss := a21 * (binv11 * binv22)
abi22 = -ss * b12
pp = 0.5 * (as11*binv11 + abi22)
qq = ss * as12
}
var discr, r float64
if math.Abs(pp*rtmin) >= 1 {
tmp := rtmin * pp
discr = tmp*tmp + qq*safmin
r = math.Sqrt(math.Abs(discr)) * rtmax
} else {
pp2 := pp * pp
if pp2+math.Abs(qq) <= safmin {
tmp := rtmax * pp
discr = tmp*tmp + qq*safmax
r = math.Sqrt(math.Abs(discr)) * rtmin
} else {
discr = pp2 + qq
r = math.Sqrt(math.Abs(discr))
}
}
// TODO(vladimir-ch): Is the following comment from the reference needed in
// a Go implementation?
//
// Note: the test of r in the following `if` is to cover the case when discr
// is small and negative and is flushed to zero during the calculation of r.
// On machines which have a consistent flush-to-zero threshold and handle
// numbers above that threshold correctly, it would not be necessary.
if discr >= 0 || r == 0 {
sum := pp + math.Copysign(r, pp)
diff := pp - math.Copysign(r, pp)
wbig := shift + sum
// Compute smaller eigenvalue.
wsmall := shift + diff
if 0.5*math.Abs(wbig) > math.Max(math.Abs(wsmall), safmin) {
wdet := (a11*a22 - a12*a21) * (binv11 * binv22)
wsmall = wdet / wbig
}
// Choose (real) eigenvalue closest to 2,2 element of A*B^{-1} for wr1.
if pp > abi22 {
wr1 = math.Min(wbig, wsmall)
wr2 = math.Max(wbig, wsmall)
} else {
wr1 = math.Max(wbig, wsmall)
wr2 = math.Min(wbig, wsmall)
}
} else {
// Complex eigenvalues.
wr1 = shift + pp
wr2 = wr1
wi = r
}
// Further scaling to avoid underflow and overflow in computing
// scale1 and overflow in computing w*B.
//
// This scale factor (wscale) is bounded from above using c1 and c2,
// and from below using c3 and c4:
// - c1 implements the condition s*A must never overflow.
// - c2 implements the condition w*B must never overflow.
// - c3, with c2, implement the condition that s*A - w*B must never overflow.
// - c4 implements the condition s should not underflow.
// - c5 implements the condition max(s,|w|) should be at least 2.
c1 := bsize * (safmin * math.Max(1, ascale))
c2 := safmin * math.Max(1, bnorm)
c3 := bsize * safmin
c4 := 1.0
c5 := 1.0
if ascale <= 1 || bsize <= 1 {
c5 = math.Min(1, ascale*bsize)
if ascale <= 1 && bsize <= 1 {
c4 = math.Min(1, (ascale/safmin)*bsize)
}
}
// Scale first eigenvalue.
wabs := math.Abs(wr1) + math.Abs(wi)
wsize := math.Max(math.Max(safmin, c1), math.Max(fuzzy1*(wabs*c2+c3),
math.Min(c4, 0.5*math.Max(wabs, c5))))
maxABsize := math.Max(ascale, bsize)
minABsize := math.Min(ascale, bsize)
if wsize != 1 {
wscale := 1 / wsize
if wsize > 1 {
scale1 = (maxABsize * wscale) * minABsize
} else {
scale1 = (minABsize * wscale) * maxABsize
}
wr1 *= wscale
if wi != 0 {
wi *= wscale
wr2 = wr1
scale2 = scale1
}
} else {
scale1 = ascale * bsize
scale2 = scale1
}
// Scale second eigenvalue if real.
if wi == 0 {
wsize = math.Max(math.Max(safmin, c1), math.Max(fuzzy1*(math.Abs(wr2)*c2+c3),
math.Min(c4, 0.5*math.Max(math.Abs(wr2), c5))))
if wsize != 1 {
wscale := 1 / wsize
if wsize > 1 {
scale2 = (maxABsize * wscale) * minABsize
} else {
scale2 = (minABsize * wscale) * maxABsize
}
wr2 *= wscale
} else {
scale2 = ascale * bsize
}
}
return scale1, scale2, wr1, wr2, wi
}
|