1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"math"
"gonum.org/v1/gonum/blas/blas64"
)
// Dlahqr computes the eigenvalues and Schur factorization of a block of an n×n
// upper Hessenberg matrix H, using the double-shift/single-shift QR algorithm.
//
// h and ldh represent the matrix H. Dlahqr works primarily with the Hessenberg
// submatrix H[ilo:ihi+1,ilo:ihi+1], but applies transformations to all of H if
// wantt is true. It is assumed that H[ihi+1:n,ihi+1:n] is already upper
// quasi-triangular, although this is not checked.
//
// It must hold that
//
// 0 <= ilo <= max(0,ihi), and ihi < n,
//
// and that
//
// H[ilo,ilo-1] == 0, if ilo > 0,
//
// otherwise Dlahqr will panic.
//
// If unconverged is zero on return, wr[ilo:ihi+1] and wi[ilo:ihi+1] will contain
// respectively the real and imaginary parts of the computed eigenvalues ilo
// to ihi. If two eigenvalues are computed as a complex conjugate pair, they are
// stored in consecutive elements of wr and wi, say the i-th and (i+1)th, with
// wi[i] > 0 and wi[i+1] < 0. If wantt is true, the eigenvalues are stored in
// the same order as on the diagonal of the Schur form returned in H, with
// wr[i] = H[i,i], and, if H[i:i+2,i:i+2] is a 2×2 diagonal block,
// wi[i] = sqrt(abs(H[i+1,i]*H[i,i+1])) and wi[i+1] = -wi[i].
//
// wr and wi must have length ihi+1.
//
// z and ldz represent an n×n matrix Z. If wantz is true, the transformations
// will be applied to the submatrix Z[iloz:ihiz+1,ilo:ihi+1] and it must hold that
//
// 0 <= iloz <= ilo, and ihi <= ihiz < n.
//
// If wantz is false, z is not referenced.
//
// unconverged indicates whether Dlahqr computed all the eigenvalues ilo to ihi
// in a total of 30 iterations per eigenvalue.
//
// If unconverged is zero, all the eigenvalues ilo to ihi have been computed and
// will be stored on return in wr[ilo:ihi+1] and wi[ilo:ihi+1].
//
// If unconverged is zero and wantt is true, H[ilo:ihi+1,ilo:ihi+1] will be
// overwritten on return by upper quasi-triangular full Schur form with any
// 2×2 diagonal blocks in standard form.
//
// If unconverged is zero and if wantt is false, the contents of h on return is
// unspecified.
//
// If unconverged is positive, some eigenvalues have not converged, and
// wr[unconverged:ihi+1] and wi[unconverged:ihi+1] contain those eigenvalues
// which have been successfully computed.
//
// If unconverged is positive and wantt is true, then on return
//
// (initial H)*U = U*(final H), (*)
//
// where U is an orthogonal matrix. The final H is upper Hessenberg and
// H[unconverged:ihi+1,unconverged:ihi+1] is upper quasi-triangular.
//
// If unconverged is positive and wantt is false, on return the remaining
// unconverged eigenvalues are the eigenvalues of the upper Hessenberg matrix
// H[ilo:unconverged,ilo:unconverged].
//
// If unconverged is positive and wantz is true, then on return
//
// (final Z) = (initial Z)*U,
//
// where U is the orthogonal matrix in (*) regardless of the value of wantt.
//
// Dlahqr is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dlahqr(wantt, wantz bool, n, ilo, ihi int, h []float64, ldh int, wr, wi []float64, iloz, ihiz int, z []float64, ldz int) (unconverged int) {
switch {
case n < 0:
panic(nLT0)
case ilo < 0, max(0, ihi) < ilo:
panic(badIlo)
case ihi >= n:
panic(badIhi)
case ldh < max(1, n):
panic(badLdH)
case wantz && (iloz < 0 || ilo < iloz):
panic(badIloz)
case wantz && (ihiz < ihi || n <= ihiz):
panic(badIhiz)
case ldz < 1, wantz && ldz < n:
panic(badLdZ)
}
// Quick return if possible.
if n == 0 {
return 0
}
switch {
case len(h) < (n-1)*ldh+n:
panic(shortH)
case len(wr) != ihi+1:
panic(shortWr)
case len(wi) != ihi+1:
panic(shortWi)
case wantz && len(z) < (n-1)*ldz+n:
panic(shortZ)
case ilo > 0 && h[ilo*ldh+ilo-1] != 0:
panic(notIsolated)
}
if ilo == ihi {
wr[ilo] = h[ilo*ldh+ilo]
wi[ilo] = 0
return 0
}
// Clear out the trash.
for j := ilo; j < ihi-2; j++ {
h[(j+2)*ldh+j] = 0
h[(j+3)*ldh+j] = 0
}
if ilo <= ihi-2 {
h[ihi*ldh+ihi-2] = 0
}
nh := ihi - ilo + 1
nz := ihiz - iloz + 1
// Set machine-dependent constants for the stopping criterion.
ulp := dlamchP
smlnum := float64(nh) / ulp * dlamchS
// i1 and i2 are the indices of the first row and last column of H to
// which transformations must be applied. If eigenvalues only are being
// computed, i1 and i2 are set inside the main loop.
var i1, i2 int
if wantt {
i1 = 0
i2 = n - 1
}
itmax := 30 * max(10, nh) // Total number of QR iterations allowed.
// kdefl counts the number of iterations since a deflation.
kdefl := 0
// The main loop begins here. i is the loop index and decreases from ihi
// to ilo in steps of 1 or 2. Each iteration of the loop works with the
// active submatrix in rows and columns l to i. Eigenvalues i+1 to ihi
// have already converged. Either l = ilo or H[l,l-1] is negligible so
// that the matrix splits.
bi := blas64.Implementation()
i := ihi
for i >= ilo {
l := ilo
// Perform QR iterations on rows and columns ilo to i until a
// submatrix of order 1 or 2 splits off at the bottom because a
// subdiagonal element has become negligible.
converged := false
for its := 0; its <= itmax; its++ {
// Look for a single small subdiagonal element.
var k int
for k = i; k > l; k-- {
if math.Abs(h[k*ldh+k-1]) <= smlnum {
break
}
tst := math.Abs(h[(k-1)*ldh+k-1]) + math.Abs(h[k*ldh+k])
if tst == 0 {
if k-2 >= ilo {
tst += math.Abs(h[(k-1)*ldh+k-2])
}
if k+1 <= ihi {
tst += math.Abs(h[(k+1)*ldh+k])
}
}
// The following is a conservative small
// subdiagonal deflation criterion due to Ahues
// & Tisseur (LAWN 122, 1997). It has better
// mathematical foundation and improves accuracy
// in some cases.
if math.Abs(h[k*ldh+k-1]) <= ulp*tst {
ab := math.Max(math.Abs(h[k*ldh+k-1]), math.Abs(h[(k-1)*ldh+k]))
ba := math.Min(math.Abs(h[k*ldh+k-1]), math.Abs(h[(k-1)*ldh+k]))
aa := math.Max(math.Abs(h[k*ldh+k]), math.Abs(h[(k-1)*ldh+k-1]-h[k*ldh+k]))
bb := math.Min(math.Abs(h[k*ldh+k]), math.Abs(h[(k-1)*ldh+k-1]-h[k*ldh+k]))
s := aa + ab
if ab/s*ba <= math.Max(smlnum, aa/s*bb*ulp) {
break
}
}
}
l = k
if l > ilo {
// H[l,l-1] is negligible.
h[l*ldh+l-1] = 0
}
if l >= i-1 {
// Break the loop because a submatrix of order 1
// or 2 has split off.
converged = true
break
}
kdefl++
// Now the active submatrix is in rows and columns l to
// i. If eigenvalues only are being computed, only the
// active submatrix need be transformed.
if !wantt {
i1 = l
i2 = i
}
const (
dat1 = 0.75
dat2 = -0.4375
kexsh = 10
)
var h11, h21, h12, h22 float64
switch {
case kdefl%(2*kexsh) == 0: // Exceptional shift.
s := math.Abs(h[i*ldh+i-1]) + math.Abs(h[(i-1)*ldh+i-2])
h11 = dat1*s + h[i*ldh+i]
h12 = dat2 * s
h21 = s
h22 = h11
case kdefl%kexsh == 0: // Exceptional shift.
s := math.Abs(h[(l+1)*ldh+l]) + math.Abs(h[(l+2)*ldh+l+1])
h11 = dat1*s + h[l*ldh+l]
h12 = dat2 * s
h21 = s
h22 = h11
default: // Prepare to use Francis' double shift (i.e.,
// 2nd degree generalized Rayleigh quotient).
h11 = h[(i-1)*ldh+i-1]
h21 = h[i*ldh+i-1]
h12 = h[(i-1)*ldh+i]
h22 = h[i*ldh+i]
}
s := math.Abs(h11) + math.Abs(h12) + math.Abs(h21) + math.Abs(h22)
var (
rt1r, rt1i float64
rt2r, rt2i float64
)
if s != 0 {
h11 /= s
h21 /= s
h12 /= s
h22 /= s
tr := (h11 + h22) / 2
det := (h11-tr)*(h22-tr) - h12*h21
rtdisc := math.Sqrt(math.Abs(det))
if det >= 0 {
// Complex conjugate shifts.
rt1r = tr * s
rt2r = rt1r
rt1i = rtdisc * s
rt2i = -rt1i
} else {
// Real shifts (use only one of them).
rt1r = tr + rtdisc
rt2r = tr - rtdisc
if math.Abs(rt1r-h22) <= math.Abs(rt2r-h22) {
rt1r *= s
rt2r = rt1r
} else {
rt2r *= s
rt1r = rt2r
}
rt1i = 0
rt2i = 0
}
}
// Look for two consecutive small subdiagonal elements.
var m int
var v [3]float64
for m = i - 2; m >= l; m-- {
// Determine the effect of starting the
// double-shift QR iteration at row m, and see
// if this would make H[m,m-1] negligible. The
// following uses scaling to avoid overflows and
// most underflows.
h21s := h[(m+1)*ldh+m]
s := math.Abs(h[m*ldh+m]-rt2r) + math.Abs(rt2i) + math.Abs(h21s)
h21s /= s
v[0] = h21s*h[m*ldh+m+1] + (h[m*ldh+m]-rt1r)*((h[m*ldh+m]-rt2r)/s) - rt2i/s*rt1i
v[1] = h21s * (h[m*ldh+m] + h[(m+1)*ldh+m+1] - rt1r - rt2r)
v[2] = h21s * h[(m+2)*ldh+m+1]
s = math.Abs(v[0]) + math.Abs(v[1]) + math.Abs(v[2])
v[0] /= s
v[1] /= s
v[2] /= s
if m == l {
break
}
dsum := math.Abs(h[(m-1)*ldh+m-1]) + math.Abs(h[m*ldh+m]) + math.Abs(h[(m+1)*ldh+m+1])
if math.Abs(h[m*ldh+m-1])*(math.Abs(v[1])+math.Abs(v[2])) <= ulp*math.Abs(v[0])*dsum {
break
}
}
// Double-shift QR step.
for k := m; k < i; k++ {
// The first iteration of this loop determines a
// reflection G from the vector V and applies it
// from left and right to H, thus creating a
// non-zero bulge below the subdiagonal.
//
// Each subsequent iteration determines a
// reflection G to restore the Hessenberg form
// in the (k-1)th column, and thus chases the
// bulge one step toward the bottom of the
// active submatrix. nr is the order of G.
nr := min(3, i-k+1)
if k > m {
bi.Dcopy(nr, h[k*ldh+k-1:], ldh, v[:], 1)
}
var t0 float64
v[0], t0 = impl.Dlarfg(nr, v[0], v[1:], 1)
if k > m {
h[k*ldh+k-1] = v[0]
h[(k+1)*ldh+k-1] = 0
if k < i-1 {
h[(k+2)*ldh+k-1] = 0
}
} else if m > l {
// Use the following instead of H[k,k-1] = -H[k,k-1]
// to avoid a bug when v[1] and v[2] underflow.
h[k*ldh+k-1] *= 1 - t0
}
t1 := t0 * v[1]
if nr == 3 {
t2 := t0 * v[2]
// Apply G from the left to transform
// the rows of the matrix in columns k
// to i2.
for j := k; j <= i2; j++ {
sum := h[k*ldh+j] + v[1]*h[(k+1)*ldh+j] + v[2]*h[(k+2)*ldh+j]
h[k*ldh+j] -= sum * t0
h[(k+1)*ldh+j] -= sum * t1
h[(k+2)*ldh+j] -= sum * t2
}
// Apply G from the right to transform
// the columns of the matrix in rows i1
// to min(k+3,i).
for j := i1; j <= min(k+3, i); j++ {
sum := h[j*ldh+k] + v[1]*h[j*ldh+k+1] + v[2]*h[j*ldh+k+2]
h[j*ldh+k] -= sum * t0
h[j*ldh+k+1] -= sum * t1
h[j*ldh+k+2] -= sum * t2
}
if wantz {
// Accumulate transformations in the matrix Z.
for j := iloz; j <= ihiz; j++ {
sum := z[j*ldz+k] + v[1]*z[j*ldz+k+1] + v[2]*z[j*ldz+k+2]
z[j*ldz+k] -= sum * t0
z[j*ldz+k+1] -= sum * t1
z[j*ldz+k+2] -= sum * t2
}
}
} else if nr == 2 {
// Apply G from the left to transform
// the rows of the matrix in columns k
// to i2.
for j := k; j <= i2; j++ {
sum := h[k*ldh+j] + v[1]*h[(k+1)*ldh+j]
h[k*ldh+j] -= sum * t0
h[(k+1)*ldh+j] -= sum * t1
}
// Apply G from the right to transform
// the columns of the matrix in rows i1
// to min(k+3,i).
for j := i1; j <= i; j++ {
sum := h[j*ldh+k] + v[1]*h[j*ldh+k+1]
h[j*ldh+k] -= sum * t0
h[j*ldh+k+1] -= sum * t1
}
if wantz {
// Accumulate transformations in the matrix Z.
for j := iloz; j <= ihiz; j++ {
sum := z[j*ldz+k] + v[1]*z[j*ldz+k+1]
z[j*ldz+k] -= sum * t0
z[j*ldz+k+1] -= sum * t1
}
}
}
}
}
if !converged {
// The QR iteration finished without splitting off a
// submatrix of order 1 or 2.
return i + 1
}
if l == i {
// H[i,i-1] is negligible: one eigenvalue has converged.
wr[i] = h[i*ldh+i]
wi[i] = 0
} else if l == i-1 {
// H[i-1,i-2] is negligible: a pair of eigenvalues have converged.
// Transform the 2×2 submatrix to standard Schur form,
// and compute and store the eigenvalues.
var cs, sn float64
a, b := h[(i-1)*ldh+i-1], h[(i-1)*ldh+i]
c, d := h[i*ldh+i-1], h[i*ldh+i]
a, b, c, d, wr[i-1], wi[i-1], wr[i], wi[i], cs, sn = impl.Dlanv2(a, b, c, d)
h[(i-1)*ldh+i-1], h[(i-1)*ldh+i] = a, b
h[i*ldh+i-1], h[i*ldh+i] = c, d
if wantt {
// Apply the transformation to the rest of H.
if i2 > i {
bi.Drot(i2-i, h[(i-1)*ldh+i+1:], 1, h[i*ldh+i+1:], 1, cs, sn)
}
bi.Drot(i-i1-1, h[i1*ldh+i-1:], ldh, h[i1*ldh+i:], ldh, cs, sn)
}
if wantz {
// Apply the transformation to Z.
bi.Drot(nz, z[iloz*ldz+i-1:], ldz, z[iloz*ldz+i:], ldz, cs, sn)
}
}
// Reset deflation counter.
kdefl = 0
// Return to start of the main loop with new value of i.
i = l - 1
}
return 0
}
|