File: dlanhs.go

package info (click to toggle)
golang-gonum-v1-gonum 0.15.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,792 kB
  • sloc: asm: 6,252; fortran: 5,271; sh: 377; ruby: 211; makefile: 98
file content (78 lines) | stat: -rw-r--r-- 1,844 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
// Copyright ©2023 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package gonum

import (
	"math"

	"gonum.org/v1/gonum/blas/blas64"
	"gonum.org/v1/gonum/lapack"
)

// Dlanhs returns the value of the one norm, or the Frobenius norm, or the
// infinity norm, or the element of largest absolute value of a Hessenberg
// matrix A.
//
// If norm is lapack.MaxColumnSum, work must have length at least n.
func (impl Implementation) Dlanhs(norm lapack.MatrixNorm, n int, a []float64, lda int, work []float64) float64 {
	switch {
	case norm != lapack.MaxRowSum && norm != lapack.MaxAbs && norm != lapack.MaxColumnSum && norm != lapack.Frobenius:
		panic(badNorm)
	case n < 0:
		panic(nLT0)
	case lda < max(1, n):
		panic(badLdA)
	}

	if n == 0 {
		return 0
	}

	switch {
	case len(a) < (n-1)*lda+n:
		panic(shortA)
	case norm == lapack.MaxColumnSum && len(work) < n:
		panic(shortWork)
	}

	bi := blas64.Implementation()
	var value float64
	switch norm {
	case lapack.MaxAbs:
		for i := 0; i < n; i++ {
			minj := max(0, i-1)
			for _, v := range a[i*lda+minj : i*lda+n] {
				value = math.Max(value, math.Abs(v))
			}
		}
	case lapack.MaxColumnSum:
		for i := 0; i < n; i++ {
			work[i] = 0
		}
		for i := 0; i < n; i++ {
			for j := max(0, i-1); j < n; j++ {
				work[j] += math.Abs(a[i*lda+j])
			}
		}
		for _, v := range work[:n] {
			value = math.Max(value, v)
		}
	case lapack.MaxRowSum:
		for i := 0; i < n; i++ {
			minj := max(0, i-1)
			sum := bi.Dasum(n-minj, a[i*lda+minj:], 1)
			value = math.Max(value, sum)
		}
	case lapack.Frobenius:
		scale := 0.0
		sum := 1.0
		for i := 0; i < n; i++ {
			minj := max(0, i-1)
			scale, sum = impl.Dlassq(n-minj, a[i*lda+minj:], 1, scale, sum)
		}
		value = scale * math.Sqrt(sum)
	}
	return value
}