1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import "math"
// Dlanv2 computes the Schur factorization of a real 2×2 matrix:
//
// [ a b ] = [ cs -sn ] * [ aa bb ] * [ cs sn ]
// [ c d ] [ sn cs ] [ cc dd ] * [-sn cs ]
//
// If cc is zero, aa and dd are real eigenvalues of the matrix. Otherwise it
// holds that aa = dd and bb*cc < 0, and aa ± sqrt(bb*cc) are complex conjugate
// eigenvalues. The real and imaginary parts of the eigenvalues are returned in
// (rt1r,rt1i) and (rt2r,rt2i).
func (impl Implementation) Dlanv2(a, b, c, d float64) (aa, bb, cc, dd float64, rt1r, rt1i, rt2r, rt2i float64, cs, sn float64) {
switch {
case c == 0: // Matrix is already upper triangular.
aa = a
bb = b
cc = 0
dd = d
cs = 1
sn = 0
case b == 0: // Matrix is lower triangular, swap rows and columns.
aa = d
bb = -c
cc = 0
dd = a
cs = 0
sn = 1
case a == d && math.Signbit(b) != math.Signbit(c): // Matrix is already in the standard Schur form.
aa = a
bb = b
cc = c
dd = d
cs = 1
sn = 0
default:
temp := a - d
p := temp / 2
bcmax := math.Max(math.Abs(b), math.Abs(c))
bcmis := math.Min(math.Abs(b), math.Abs(c))
if b*c < 0 {
bcmis *= -1
}
scale := math.Max(math.Abs(p), bcmax)
z := p/scale*p + bcmax/scale*bcmis
eps := dlamchP
if z >= 4*eps {
// Real eigenvalues. Compute aa and dd.
if p > 0 {
z = p + math.Sqrt(scale)*math.Sqrt(z)
} else {
z = p - math.Sqrt(scale)*math.Sqrt(z)
}
aa = d + z
dd = d - bcmax/z*bcmis
// Compute bb and the rotation matrix.
tau := impl.Dlapy2(c, z)
cs = z / tau
sn = c / tau
bb = b - c
cc = 0
} else {
// Complex eigenvalues, or real (almost) equal eigenvalues.
// Make diagonal elements equal.
safmn2 := math.Pow(dlamchB, math.Log(dlamchS/dlamchE)/math.Log(dlamchB)/2)
safmx2 := 1 / safmn2
sigma := b + c
loop:
for iter := 0; iter < 20; iter++ {
scale = math.Max(math.Abs(temp), math.Abs(sigma))
switch {
case scale >= safmx2:
sigma *= safmn2
temp *= safmn2
case scale <= safmn2:
sigma *= safmx2
temp *= safmx2
default:
break loop
}
}
p = temp / 2
tau := impl.Dlapy2(sigma, temp)
cs = math.Sqrt((1 + math.Abs(sigma)/tau) / 2)
sn = -p / (tau * cs)
if sigma < 0 {
sn *= -1
}
// Compute [ aa bb ] = [ a b ] [ cs -sn ]
// [ cc dd ] [ c d ] [ sn cs ]
aa = a*cs + b*sn
bb = -a*sn + b*cs
cc = c*cs + d*sn
dd = -c*sn + d*cs
// Compute [ a b ] = [ cs sn ] [ aa bb ]
// [ c d ] [-sn cs ] [ cc dd ]
a = aa*cs + cc*sn
b = bb*cs + dd*sn
c = -aa*sn + cc*cs
d = -bb*sn + dd*cs
temp = (a + d) / 2
aa = temp
bb = b
cc = c
dd = temp
if cc != 0 {
if bb != 0 {
if math.Signbit(bb) == math.Signbit(cc) {
// Real eigenvalues, reduce to
// upper triangular form.
sab := math.Sqrt(math.Abs(bb))
sac := math.Sqrt(math.Abs(cc))
p = sab * sac
if cc < 0 {
p *= -1
}
tau = 1 / math.Sqrt(math.Abs(bb+cc))
aa = temp + p
bb = bb - cc
cc = 0
dd = temp - p
cs1 := sab * tau
sn1 := sac * tau
cs, sn = cs*cs1-sn*sn1, cs*sn1+sn*cs1
}
} else {
bb = -cc
cc = 0
cs, sn = -sn, cs
}
}
}
}
// Store eigenvalues in (rt1r,rt1i) and (rt2r,rt2i).
rt1r = aa
rt2r = dd
if cc != 0 {
rt1i = math.Sqrt(math.Abs(bb)) * math.Sqrt(math.Abs(cc))
rt2i = -rt1i
}
return
}
|