1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"math"
"gonum.org/v1/gonum/blas"
)
// Dlaqr04 computes the eigenvalues of a block of an n×n upper Hessenberg matrix
// H, and optionally the matrices T and Z from the Schur decomposition
//
// H = Z T Zᵀ
//
// where T is an upper quasi-triangular matrix (the Schur form), and Z is the
// orthogonal matrix of Schur vectors.
//
// wantt indicates whether the full Schur form T is required. If wantt is false,
// then only enough of H will be updated to preserve the eigenvalues.
//
// wantz indicates whether the n×n matrix of Schur vectors Z is required. If it
// is true, the orthogonal similarity transformation will be accumulated into
// Z[iloz:ihiz+1,ilo:ihi+1], otherwise Z will not be referenced.
//
// ilo and ihi determine the block of H on which Dlaqr04 operates. It must hold that
//
// 0 <= ilo <= ihi < n if n > 0,
// ilo == 0 and ihi == -1 if n == 0,
//
// and the block must be isolated, that is,
//
// ilo == 0 or H[ilo,ilo-1] == 0,
// ihi == n-1 or H[ihi+1,ihi] == 0,
//
// otherwise Dlaqr04 will panic.
//
// wr and wi must have length ihi+1.
//
// iloz and ihiz specify the rows of Z to which transformations will be applied
// if wantz is true. It must hold that
//
// 0 <= iloz <= ilo, and ihi <= ihiz < n,
//
// otherwise Dlaqr04 will panic.
//
// work must have length at least lwork and lwork must be
//
// lwork >= 1 if n <= 11,
// lwork >= n if n > 11,
//
// otherwise Dlaqr04 will panic. lwork as large as 6*n may be required for
// optimal performance. On return, work[0] will contain the optimal value of
// lwork.
//
// If lwork is -1, instead of performing Dlaqr04, the function only estimates the
// optimal workspace size and stores it into work[0]. Neither h nor z are
// accessed.
//
// recur is the non-negative recursion depth. For recur > 0, Dlaqr04 behaves
// as DLAQR0, for recur == 0 it behaves as DLAQR4.
//
// unconverged indicates whether Dlaqr04 computed all the eigenvalues of H[ilo:ihi+1,ilo:ihi+1].
//
// If unconverged is zero and wantt is true, H will contain on return the upper
// quasi-triangular matrix T from the Schur decomposition. 2×2 diagonal blocks
// (corresponding to complex conjugate pairs of eigenvalues) will be returned in
// standard form, with H[i,i] == H[i+1,i+1] and H[i+1,i]*H[i,i+1] < 0.
//
// If unconverged is zero and if wantt is false, the contents of h on return is
// unspecified.
//
// If unconverged is zero, all the eigenvalues have been computed and their real
// and imaginary parts will be stored on return in wr[ilo:ihi+1] and
// wi[ilo:ihi+1], respectively. If two eigenvalues are computed as a complex
// conjugate pair, they are stored in consecutive elements of wr and wi, say the
// i-th and (i+1)th, with wi[i] > 0 and wi[i+1] < 0. If wantt is true, then the
// eigenvalues are stored in the same order as on the diagonal of the Schur form
// returned in H, with wr[i] = H[i,i] and, if H[i:i+2,i:i+2] is a 2×2 diagonal
// block, wi[i] = sqrt(-H[i+1,i]*H[i,i+1]) and wi[i+1] = -wi[i].
//
// If unconverged is positive, some eigenvalues have not converged, and
// wr[unconverged:ihi+1] and wi[unconverged:ihi+1] will contain those
// eigenvalues which have been successfully computed. Failures are rare.
//
// If unconverged is positive and wantt is true, then on return
//
// (initial H)*U = U*(final H), (*)
//
// where U is an orthogonal matrix. The final H is upper Hessenberg and
// H[unconverged:ihi+1,unconverged:ihi+1] is upper quasi-triangular.
//
// If unconverged is positive and wantt is false, on return the remaining
// unconverged eigenvalues are the eigenvalues of the upper Hessenberg matrix
// H[ilo:unconverged,ilo:unconverged].
//
// If unconverged is positive and wantz is true, then on return
//
// (final Z) = (initial Z)*U,
//
// where U is the orthogonal matrix in (*) regardless of the value of wantt.
//
// References:
//
// [1] K. Braman, R. Byers, R. Mathias. The Multishift QR Algorithm. Part I:
// Maintaining Well-Focused Shifts and Level 3 Performance. SIAM J. Matrix
// Anal. Appl. 23(4) (2002), pp. 929—947
// URL: http://dx.doi.org/10.1137/S0895479801384573
// [2] K. Braman, R. Byers, R. Mathias. The Multishift QR Algorithm. Part II:
// Aggressive Early Deflation. SIAM J. Matrix Anal. Appl. 23(4) (2002), pp. 948—973
// URL: http://dx.doi.org/10.1137/S0895479801384585
//
// Dlaqr04 is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dlaqr04(wantt, wantz bool, n, ilo, ihi int, h []float64, ldh int, wr, wi []float64, iloz, ihiz int, z []float64, ldz int, work []float64, lwork int, recur int) (unconverged int) {
const (
// Matrices of order ntiny or smaller must be processed by
// Dlahqr because of insufficient subdiagonal scratch space.
// This is a hard limit.
ntiny = 15
// Exceptional deflation windows: try to cure rare slow
// convergence by varying the size of the deflation window after
// kexnw iterations.
kexnw = 5
// Exceptional shifts: try to cure rare slow convergence with
// ad-hoc exceptional shifts every kexsh iterations.
kexsh = 6
// See https://github.com/gonum/lapack/pull/151#discussion_r68162802
// and the surrounding discussion for an explanation where these
// constants come from.
// TODO(vladimir-ch): Similar constants for exceptional shifts
// are used also in dlahqr.go. The first constant is different
// there, it is equal to 3. Why? And does it matter?
wilk1 = 0.75
wilk2 = -0.4375
)
switch {
case n < 0:
panic(nLT0)
case ilo < 0 || max(0, n-1) < ilo:
panic(badIlo)
case ihi < min(ilo, n-1) || n <= ihi:
panic(badIhi)
case ldh < max(1, n):
panic(badLdH)
case wantz && (iloz < 0 || ilo < iloz):
panic(badIloz)
case wantz && (ihiz < ihi || n <= ihiz):
panic(badIhiz)
case ldz < 1, wantz && ldz < n:
panic(badLdZ)
case lwork < 1 && lwork != -1:
panic(badLWork)
// TODO(vladimir-ch): Enable if and when we figure out what the minimum
// necessary lwork value is. Dlaqr04 says that the minimum is n which
// clashes with Dlaqr23's opinion about optimal work when nw <= 2
// (independent of n).
// case lwork < n && n > ntiny && lwork != -1:
// panic(badLWork)
case len(work) < max(1, lwork):
panic(shortWork)
case recur < 0:
panic(recurLT0)
}
// Quick return.
if n == 0 {
work[0] = 1
return 0
}
if lwork != -1 {
switch {
case len(h) < (n-1)*ldh+n:
panic(shortH)
case len(wr) != ihi+1:
panic(badLenWr)
case len(wi) != ihi+1:
panic(badLenWi)
case wantz && len(z) < (n-1)*ldz+n:
panic(shortZ)
case ilo > 0 && h[ilo*ldh+ilo-1] != 0:
panic(notIsolated)
case ihi+1 < n && h[(ihi+1)*ldh+ihi] != 0:
panic(notIsolated)
}
}
if n <= ntiny {
// Tiny matrices must use Dlahqr.
if lwork == -1 {
work[0] = 1
return 0
}
return impl.Dlahqr(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz)
}
// Use small bulge multi-shift QR with aggressive early deflation on
// larger-than-tiny matrices.
var jbcmpz string
if wantt {
jbcmpz = "S"
} else {
jbcmpz = "E"
}
if wantz {
jbcmpz += "V"
} else {
jbcmpz += "N"
}
var fname string
if recur > 0 {
fname = "DLAQR0"
} else {
fname = "DLAQR4"
}
// nwr is the recommended deflation window size. n is greater than ntiny,
// so there is enough subdiagonal workspace for nwr >= 2 as required.
// (In fact, there is enough subdiagonal space for nwr >= 4.)
// TODO(vladimir-ch): If there is enough space for nwr >= 4, should we
// use it?
nwr := impl.Ilaenv(13, fname, jbcmpz, n, ilo, ihi, lwork)
nwr = max(2, nwr)
nwr = min(ihi-ilo+1, min((n-1)/3, nwr))
// nsr is the recommended number of simultaneous shifts. n is greater than
// ntiny, so there is enough subdiagonal workspace for nsr to be even and
// greater than or equal to two as required.
nsr := impl.Ilaenv(15, fname, jbcmpz, n, ilo, ihi, lwork)
nsr = min(nsr, min((n-3)/6, ihi-ilo))
nsr = max(2, nsr&^1)
// Workspace query call to Dlaqr23.
impl.Dlaqr23(wantt, wantz, n, ilo, ihi, nwr+1, h, ldh, iloz, ihiz, z, ldz,
wr, wi, h, ldh, n, h, ldh, n, h, ldh, work, -1, recur)
// Optimal workspace is max(Dlaqr5, Dlaqr23).
lwkopt := max(3*nsr/2, int(work[0]))
// Quick return in case of workspace query.
if lwork == -1 {
work[0] = float64(lwkopt)
return 0
}
// Dlahqr/Dlaqr04 crossover point.
nmin := impl.Ilaenv(12, fname, jbcmpz, n, ilo, ihi, lwork)
nmin = max(ntiny, nmin)
// Nibble determines when to skip a multi-shift QR sweep (Dlaqr5).
nibble := impl.Ilaenv(14, fname, jbcmpz, n, ilo, ihi, lwork)
nibble = max(0, nibble)
// Computation mode of far-from-diagonal orthogonal updates in Dlaqr5.
kacc22 := impl.Ilaenv(16, fname, jbcmpz, n, ilo, ihi, lwork)
kacc22 = max(0, min(kacc22, 2))
// nwmax is the largest possible deflation window for which there is
// sufficient workspace.
nwmax := min((n-1)/3, lwork/2)
nw := nwmax // Start with maximum deflation window size.
// nsmax is the largest number of simultaneous shifts for which there is
// sufficient workspace.
nsmax := min((n-3)/6, 2*lwork/3) &^ 1
ndfl := 1 // Number of iterations since last deflation.
ndec := 0 // Deflation window size decrement.
// Main loop.
var (
itmax = max(30, 2*kexsh) * max(10, (ihi-ilo+1))
it = 0
)
for kbot := ihi; kbot >= ilo; {
if it == itmax {
unconverged = kbot + 1
break
}
it++
// Locate active block.
ktop := ilo
for k := kbot; k >= ilo+1; k-- {
if h[k*ldh+k-1] == 0 {
ktop = k
break
}
}
// Select deflation window size nw.
//
// Typical Case:
// If possible and advisable, nibble the entire active block.
// If not, use size min(nwr,nwmax) or min(nwr+1,nwmax)
// depending upon which has the smaller corresponding
// subdiagonal entry (a heuristic).
//
// Exceptional Case:
// If there have been no deflations in kexnw or more
// iterations, then vary the deflation window size. At first,
// because larger windows are, in general, more powerful than
// smaller ones, rapidly increase the window to the maximum
// possible. Then, gradually reduce the window size.
nh := kbot - ktop + 1
nwupbd := min(nh, nwmax)
if ndfl < kexnw {
nw = min(nwupbd, nwr)
} else {
nw = min(nwupbd, 2*nw)
}
if nw < nwmax {
if nw >= nh-1 {
nw = nh
} else {
kwtop := kbot - nw + 1
if math.Abs(h[kwtop*ldh+kwtop-1]) > math.Abs(h[(kwtop-1)*ldh+kwtop-2]) {
nw++
}
}
}
if ndfl < kexnw {
ndec = -1
} else if ndec >= 0 || nw >= nwupbd {
ndec++
if nw-ndec < 2 {
ndec = 0
}
nw -= ndec
}
// Split workspace under the subdiagonal of H into:
// - an nw×nw work array V in the lower left-hand corner,
// - an nw×nhv horizontal work array along the bottom edge (nhv
// must be at least nw but more is better),
// - an nve×nw vertical work array along the left-hand-edge
// (nhv can be any positive integer but more is better).
kv := n - nw
kt := nw
kwv := nw + 1
nhv := n - kwv - kt
// Aggressive early deflation.
ls, ld := impl.Dlaqr23(wantt, wantz, n, ktop, kbot, nw,
h, ldh, iloz, ihiz, z, ldz, wr[:kbot+1], wi[:kbot+1],
h[kv*ldh:], ldh, nhv, h[kv*ldh+kt:], ldh, nhv, h[kwv*ldh:], ldh, work, lwork, recur)
// Adjust kbot accounting for new deflations.
kbot -= ld
// ks points to the shifts.
ks := kbot - ls + 1
// Skip an expensive QR sweep if there is a (partly heuristic)
// reason to expect that many eigenvalues will deflate without
// it. Here, the QR sweep is skipped if many eigenvalues have
// just been deflated or if the remaining active block is small.
if ld > 0 && (100*ld > nw*nibble || kbot-ktop+1 <= min(nmin, nwmax)) {
// ld is positive, note progress.
ndfl = 1
continue
}
// ns is the nominal number of simultaneous shifts. This may be
// lowered (slightly) if Dlaqr23 did not provide that many
// shifts.
ns := min(min(nsmax, nsr), max(2, kbot-ktop)) &^ 1
// If there have been no deflations in a multiple of kexsh
// iterations, then try exceptional shifts. Otherwise use shifts
// provided by Dlaqr23 above or from the eigenvalues of a
// trailing principal submatrix.
if ndfl%kexsh == 0 {
ks = kbot - ns + 1
for i := kbot; i > max(ks, ktop+1); i -= 2 {
ss := math.Abs(h[i*ldh+i-1]) + math.Abs(h[(i-1)*ldh+i-2])
aa := wilk1*ss + h[i*ldh+i]
_, _, _, _, wr[i-1], wi[i-1], wr[i], wi[i], _, _ =
impl.Dlanv2(aa, ss, wilk2*ss, aa)
}
if ks == ktop {
wr[ks+1] = h[(ks+1)*ldh+ks+1]
wi[ks+1] = 0
wr[ks] = wr[ks+1]
wi[ks] = wi[ks+1]
}
} else {
// If we got ns/2 or fewer shifts, use Dlahqr or recur
// into Dlaqr04 on a trailing principal submatrix to get
// more. Since ns <= nsmax <=(n+6)/9, there is enough
// space below the subdiagonal to fit an ns×ns scratch
// array.
if kbot-ks+1 <= ns/2 {
ks = kbot - ns + 1
kt = n - ns
impl.Dlacpy(blas.All, ns, ns, h[ks*ldh+ks:], ldh, h[kt*ldh:], ldh)
if ns > nmin && recur > 0 {
ks += impl.Dlaqr04(false, false, ns, 1, ns-1, h[kt*ldh:], ldh,
wr[ks:ks+ns], wi[ks:ks+ns], 0, 0, nil, 0, work, lwork, recur-1)
} else {
ks += impl.Dlahqr(false, false, ns, 0, ns-1, h[kt*ldh:], ldh,
wr[ks:ks+ns], wi[ks:ks+ns], 0, 0, nil, 1)
}
// In case of a rare QR failure use eigenvalues
// of the trailing 2×2 principal submatrix.
if ks >= kbot {
aa := h[(kbot-1)*ldh+kbot-1]
bb := h[(kbot-1)*ldh+kbot]
cc := h[kbot*ldh+kbot-1]
dd := h[kbot*ldh+kbot]
_, _, _, _, wr[kbot-1], wi[kbot-1], wr[kbot], wi[kbot], _, _ =
impl.Dlanv2(aa, bb, cc, dd)
ks = kbot - 1
}
}
if kbot-ks+1 > ns {
// Sorting the shifts helps a little. Bubble
// sort keeps complex conjugate pairs together.
sorted := false
for k := kbot; k > ks; k-- {
if sorted {
break
}
sorted = true
for i := ks; i < k; i++ {
if math.Abs(wr[i])+math.Abs(wi[i]) >= math.Abs(wr[i+1])+math.Abs(wi[i+1]) {
continue
}
sorted = false
wr[i], wr[i+1] = wr[i+1], wr[i]
wi[i], wi[i+1] = wi[i+1], wi[i]
}
}
}
// Shuffle shifts into pairs of real shifts and pairs of
// complex conjugate shifts using the fact that complex
// conjugate shifts are already adjacent to one another.
// TODO(vladimir-ch): The shuffling here could probably
// be removed but I'm not sure right now and it's safer
// to leave it.
for i := kbot; i > ks+1; i -= 2 {
if wi[i] == -wi[i-1] {
continue
}
wr[i], wr[i-1], wr[i-2] = wr[i-1], wr[i-2], wr[i]
wi[i], wi[i-1], wi[i-2] = wi[i-1], wi[i-2], wi[i]
}
}
// If there are only two shifts and both are real, then use only one.
if kbot-ks+1 == 2 && wi[kbot] == 0 {
if math.Abs(wr[kbot]-h[kbot*ldh+kbot]) < math.Abs(wr[kbot-1]-h[kbot*ldh+kbot]) {
wr[kbot-1] = wr[kbot]
} else {
wr[kbot] = wr[kbot-1]
}
}
// Use up to ns of the smallest magnitude shifts. If there
// aren't ns shifts available, then use them all, possibly
// dropping one to make the number of shifts even.
ns = min(ns, kbot-ks+1) &^ 1
ks = kbot - ns + 1
// Split workspace under the subdiagonal into:
// - a kdu×kdu work array U in the lower left-hand-corner,
// - a kdu×nhv horizontal work array WH along the bottom edge
// (nhv must be at least kdu but more is better),
// - an nhv×kdu vertical work array WV along the left-hand-edge
// (nhv must be at least kdu but more is better).
kdu := 2 * ns
ku := n - kdu
kwh := kdu
kwv = kdu + 3
nhv = n - kwv - kdu
// Small-bulge multi-shift QR sweep.
impl.Dlaqr5(wantt, wantz, kacc22, n, ktop, kbot, ns,
wr[ks:ks+ns], wi[ks:ks+ns], h, ldh, iloz, ihiz, z, ldz,
work, 3, h[ku*ldh:], ldh, nhv, h[kwv*ldh:], ldh, nhv, h[ku*ldh+kwh:], ldh)
// Note progress (or the lack of it).
if ld > 0 {
ndfl = 1
} else {
ndfl++
}
}
work[0] = float64(lwkopt)
return unconverged
}
|