1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack"
)
// Dlarft forms the triangular factor T of a block reflector H, storing the answer
// in t.
//
// H = I - V * T * Vᵀ if store == lapack.ColumnWise
// H = I - Vᵀ * T * V if store == lapack.RowWise
//
// H is defined by a product of the elementary reflectors where
//
// H = H_0 * H_1 * ... * H_{k-1} if direct == lapack.Forward
// H = H_{k-1} * ... * H_1 * H_0 if direct == lapack.Backward
//
// t is a k×k triangular matrix. t is upper triangular if direct = lapack.Forward
// and lower triangular otherwise. This function will panic if t is not of
// sufficient size.
//
// store describes the storage of the elementary reflectors in v. See
// Dlarfb for a description of layout.
//
// tau contains the scalar factors of the elementary reflectors H_i.
//
// Dlarft is an internal routine. It is exported for testing purposes.
func (Implementation) Dlarft(direct lapack.Direct, store lapack.StoreV, n, k int, v []float64, ldv int, tau []float64, t []float64, ldt int) {
mv, nv := n, k
if store == lapack.RowWise {
mv, nv = k, n
}
switch {
case direct != lapack.Forward && direct != lapack.Backward:
panic(badDirect)
case store != lapack.RowWise && store != lapack.ColumnWise:
panic(badStoreV)
case n < 0:
panic(nLT0)
case k < 1:
panic(kLT1)
case ldv < max(1, nv):
panic(badLdV)
case len(tau) < k:
panic(shortTau)
case ldt < max(1, k):
panic(shortT)
}
if n == 0 {
return
}
switch {
case len(v) < (mv-1)*ldv+nv:
panic(shortV)
case len(t) < (k-1)*ldt+k:
panic(shortT)
}
bi := blas64.Implementation()
// TODO(btracey): There are a number of minor obvious loop optimizations here.
// TODO(btracey): It may be possible to rearrange some of the code so that
// index of 1 is more common in the Dgemv.
if direct == lapack.Forward {
prevlastv := n - 1
for i := 0; i < k; i++ {
prevlastv = max(i, prevlastv)
if tau[i] == 0 {
for j := 0; j <= i; j++ {
t[j*ldt+i] = 0
}
continue
}
var lastv int
if store == lapack.ColumnWise {
// skip trailing zeros
for lastv = n - 1; lastv >= i+1; lastv-- {
if v[lastv*ldv+i] != 0 {
break
}
}
for j := 0; j < i; j++ {
t[j*ldt+i] = -tau[i] * v[i*ldv+j]
}
j := min(lastv, prevlastv)
bi.Dgemv(blas.Trans, j-i, i,
-tau[i], v[(i+1)*ldv:], ldv, v[(i+1)*ldv+i:], ldv,
1, t[i:], ldt)
} else {
for lastv = n - 1; lastv >= i+1; lastv-- {
if v[i*ldv+lastv] != 0 {
break
}
}
for j := 0; j < i; j++ {
t[j*ldt+i] = -tau[i] * v[j*ldv+i]
}
j := min(lastv, prevlastv)
bi.Dgemv(blas.NoTrans, i, j-i,
-tau[i], v[i+1:], ldv, v[i*ldv+i+1:], 1,
1, t[i:], ldt)
}
bi.Dtrmv(blas.Upper, blas.NoTrans, blas.NonUnit, i, t, ldt, t[i:], ldt)
t[i*ldt+i] = tau[i]
if i > 1 {
prevlastv = max(prevlastv, lastv)
} else {
prevlastv = lastv
}
}
return
}
prevlastv := 0
for i := k - 1; i >= 0; i-- {
if tau[i] == 0 {
for j := i; j < k; j++ {
t[j*ldt+i] = 0
}
continue
}
var lastv int
if i < k-1 {
if store == lapack.ColumnWise {
for lastv = 0; lastv < i; lastv++ {
if v[lastv*ldv+i] != 0 {
break
}
}
for j := i + 1; j < k; j++ {
t[j*ldt+i] = -tau[i] * v[(n-k+i)*ldv+j]
}
j := max(lastv, prevlastv)
bi.Dgemv(blas.Trans, n-k+i-j, k-i-1,
-tau[i], v[j*ldv+i+1:], ldv, v[j*ldv+i:], ldv,
1, t[(i+1)*ldt+i:], ldt)
} else {
for lastv = 0; lastv < i; lastv++ {
if v[i*ldv+lastv] != 0 {
break
}
}
for j := i + 1; j < k; j++ {
t[j*ldt+i] = -tau[i] * v[j*ldv+n-k+i]
}
j := max(lastv, prevlastv)
bi.Dgemv(blas.NoTrans, k-i-1, n-k+i-j,
-tau[i], v[(i+1)*ldv+j:], ldv, v[i*ldv+j:], 1,
1, t[(i+1)*ldt+i:], ldt)
}
bi.Dtrmv(blas.Lower, blas.NoTrans, blas.NonUnit, k-i-1,
t[(i+1)*ldt+i+1:], ldt,
t[(i+1)*ldt+i:], ldt)
if i > 0 {
prevlastv = min(prevlastv, lastv)
} else {
prevlastv = lastv
}
}
t[i*ldt+i] = tau[i]
}
}
|