1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
|
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"math"
"gonum.org/v1/gonum/lapack"
)
// Dlasq2 computes all the eigenvalues of the symmetric positive
// definite tridiagonal matrix associated with the qd array Z. Eigevalues
// are computed to high relative accuracy avoiding denormalization, underflow
// and overflow.
//
// To see the relation of Z to the tridiagonal matrix, let L be a
// unit lower bidiagonal matrix with sub-diagonals Z(2,4,6,,..) and
// let U be an upper bidiagonal matrix with 1's above and diagonal
// Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the
// symmetric tridiagonal to which it is similar.
//
// info returns a status error. The return codes mean as follows:
//
// 0: The algorithm completed successfully.
// 1: A split was marked by a positive value in e.
// 2: Current block of Z not diagonalized after 100*n iterations (in inner
// while loop). On exit Z holds a qd array with the same eigenvalues as
// the given Z.
// 3: Termination criterion of outer while loop not met (program created more
// than N unreduced blocks).
//
// z must have length at least 4*n, and must not contain any negative elements.
// Dlasq2 will panic otherwise.
//
// Dlasq2 is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dlasq2(n int, z []float64) (info int) {
if n < 0 {
panic(nLT0)
}
if n == 0 {
return info
}
if len(z) < 4*n {
panic(shortZ)
}
if n == 1 {
if z[0] < 0 {
panic(negZ)
}
return info
}
const cbias = 1.5
eps := dlamchP
safmin := dlamchS
tol := eps * 100
tol2 := tol * tol
if n == 2 {
if z[1] < 0 || z[2] < 0 {
panic(negZ)
} else if z[2] > z[0] {
z[0], z[2] = z[2], z[0]
}
z[4] = z[0] + z[1] + z[2]
if z[1] > z[2]*tol2 {
t := 0.5 * (z[0] - z[2] + z[1])
s := z[2] * (z[1] / t)
if s <= t {
s = z[2] * (z[1] / (t * (1 + math.Sqrt(1+s/t))))
} else {
s = z[2] * (z[1] / (t + math.Sqrt(t)*math.Sqrt(t+s)))
}
t = z[0] + s + z[1]
z[2] *= z[0] / t
z[0] = t
}
z[1] = z[2]
z[5] = z[1] + z[0]
return info
}
// Check for negative data and compute sums of q's and e's.
z[2*n-1] = 0
emin := z[1]
var d, e, qmax float64
var i1, n1 int
for k := 0; k < 2*(n-1); k += 2 {
if z[k] < 0 || z[k+1] < 0 {
panic(negZ)
}
d += z[k]
e += z[k+1]
qmax = math.Max(qmax, z[k])
emin = math.Min(emin, z[k+1])
}
if z[2*(n-1)] < 0 {
panic(negZ)
}
d += z[2*(n-1)]
// Check for diagonality.
if e == 0 {
for k := 1; k < n; k++ {
z[k] = z[2*k]
}
impl.Dlasrt(lapack.SortDecreasing, n, z)
z[2*(n-1)] = d
return info
}
trace := d + e
// Check for zero data.
if trace == 0 {
z[2*(n-1)] = 0
return info
}
// Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...).
for k := 2 * n; k >= 2; k -= 2 {
z[2*k-1] = 0
z[2*k-2] = z[k-1]
z[2*k-3] = 0
z[2*k-4] = z[k-2]
}
i0 := 0
n0 := n - 1
// Reverse the qd-array, if warranted.
// z[4*i0-3] --> z[4*(i0+1)-3-1] --> z[4*i0]
if cbias*z[4*i0] < z[4*n0] {
ipn4Out := 4 * (i0 + n0 + 2)
for i4loop := 4 * (i0 + 1); i4loop <= 2*(i0+n0+1); i4loop += 4 {
i4 := i4loop - 1
ipn4 := ipn4Out - 1
z[i4-3], z[ipn4-i4-4] = z[ipn4-i4-4], z[i4-3]
z[i4-1], z[ipn4-i4-6] = z[ipn4-i4-6], z[i4-1]
}
}
// Initial split checking via dqd and Li's test.
pp := 0
for k := 0; k < 2; k++ {
d = z[4*n0+pp]
for i4loop := 4*n0 + pp; i4loop >= 4*(i0+1)+pp; i4loop -= 4 {
i4 := i4loop - 1
if z[i4-1] <= tol2*d {
z[i4-1] = math.Copysign(0, -1)
d = z[i4-3]
} else {
d = z[i4-3] * (d / (d + z[i4-1]))
}
}
// dqd maps Z to ZZ plus Li's test.
emin = z[4*(i0+1)+pp]
d = z[4*i0+pp]
for i4loop := 4*(i0+1) + pp; i4loop <= 4*n0+pp; i4loop += 4 {
i4 := i4loop - 1
z[i4-2*pp-2] = d + z[i4-1]
if z[i4-1] <= tol2*d {
z[i4-1] = math.Copysign(0, -1)
z[i4-2*pp-2] = d
z[i4-2*pp] = 0
d = z[i4+1]
} else if safmin*z[i4+1] < z[i4-2*pp-2] && safmin*z[i4-2*pp-2] < z[i4+1] {
tmp := z[i4+1] / z[i4-2*pp-2]
z[i4-2*pp] = z[i4-1] * tmp
d *= tmp
} else {
z[i4-2*pp] = z[i4+1] * (z[i4-1] / z[i4-2*pp-2])
d = z[i4+1] * (d / z[i4-2*pp-2])
}
emin = math.Min(emin, z[i4-2*pp])
}
z[4*(n0+1)-pp-3] = d
// Now find qmax.
qmax = z[4*(i0+1)-pp-3]
for i4loop := 4*(i0+1) - pp + 2; i4loop <= 4*(n0+1)+pp-2; i4loop += 4 {
i4 := i4loop - 1
qmax = math.Max(qmax, z[i4])
}
// Prepare for the next iteration on K.
pp = 1 - pp
}
// Initialise variables to pass to DLASQ3.
var ttype int
var dmin1, dmin2, dn, dn1, dn2, g, tau float64
var tempq float64
iter := 2
var nFail int
nDiv := 2 * (n0 - i0)
var i4 int
outer:
for iwhila := 1; iwhila <= n+1; iwhila++ {
// Test for completion.
if n0 < 0 {
// Move q's to the front.
for k := 1; k < n; k++ {
z[k] = z[4*k]
}
// Sort and compute sum of eigenvalues.
impl.Dlasrt(lapack.SortDecreasing, n, z)
e = 0
for k := n - 1; k >= 0; k-- {
e += z[k]
}
// Store trace, sum(eigenvalues) and information on performance.
z[2*n] = trace
z[2*n+1] = e
z[2*n+2] = float64(iter)
z[2*n+3] = float64(nDiv) / float64(n*n)
z[2*n+4] = 100 * float64(nFail) / float64(iter)
return info
}
// While array unfinished do
// e[n0] holds the value of sigma when submatrix in i0:n0
// splits from the rest of the array, but is negated.
var desig float64
var sigma float64
if n0 != n-1 {
sigma = -z[4*(n0+1)-2]
}
if sigma < 0 {
info = 1
return info
}
// Find last unreduced submatrix's top index i0, find qmax and
// emin. Find Gershgorin-type bound if Q's much greater than E's.
var emax float64
if n0 > i0 {
emin = math.Abs(z[4*(n0+1)-6])
} else {
emin = 0
}
qmin := z[4*(n0+1)-4]
qmax = qmin
zSmall := false
for i4loop := 4 * (n0 + 1); i4loop >= 8; i4loop -= 4 {
i4 = i4loop - 1
if z[i4-5] <= 0 {
zSmall = true
break
}
if qmin >= 4*emax {
qmin = math.Min(qmin, z[i4-3])
emax = math.Max(emax, z[i4-5])
}
qmax = math.Max(qmax, z[i4-7]+z[i4-5])
emin = math.Min(emin, z[i4-5])
}
if !zSmall {
i4 = 3
}
i0 = (i4+1)/4 - 1
pp = 0
if n0-i0 > 1 {
dee := z[4*i0]
deemin := dee
kmin := i0
for i4loop := 4*(i0+1) + 1; i4loop <= 4*(n0+1)-3; i4loop += 4 {
i4 := i4loop - 1
dee = z[i4] * (dee / (dee + z[i4-2]))
if dee <= deemin {
deemin = dee
kmin = (i4+4)/4 - 1
}
}
if (kmin-i0)*2 < n0-kmin && deemin <= 0.5*z[4*n0] {
ipn4Out := 4 * (i0 + n0 + 2)
pp = 2
for i4loop := 4 * (i0 + 1); i4loop <= 2*(i0+n0+1); i4loop += 4 {
i4 := i4loop - 1
ipn4 := ipn4Out - 1
z[i4-3], z[ipn4-i4-4] = z[ipn4-i4-4], z[i4-3]
z[i4-2], z[ipn4-i4-3] = z[ipn4-i4-3], z[i4-2]
z[i4-1], z[ipn4-i4-6] = z[ipn4-i4-6], z[i4-1]
z[i4], z[ipn4-i4-5] = z[ipn4-i4-5], z[i4]
}
}
}
// Put -(initial shift) into DMIN.
dmin := -math.Max(0, qmin-2*math.Sqrt(qmin)*math.Sqrt(emax))
// Now i0:n0 is unreduced.
// PP = 0 for ping, PP = 1 for pong.
// PP = 2 indicates that flipping was applied to the Z array and
// that the tests for deflation upon entry in Dlasq3 should
// not be performed.
nbig := 100 * (n0 - i0 + 1)
for iwhilb := 0; iwhilb < nbig; iwhilb++ {
if i0 > n0 {
continue outer
}
// While submatrix unfinished take a good dqds step.
i0, n0, pp, dmin, sigma, desig, qmax, nFail, iter, nDiv, ttype, dmin1, dmin2, dn, dn1, dn2, g, tau =
impl.Dlasq3(i0, n0, z, pp, dmin, sigma, desig, qmax, nFail, iter, nDiv, ttype, dmin1, dmin2, dn, dn1, dn2, g, tau)
pp = 1 - pp
// When emin is very small check for splits.
if pp == 0 && n0-i0 >= 3 {
if z[4*(n0+1)-1] <= tol2*qmax || z[4*(n0+1)-2] <= tol2*sigma {
splt := i0 - 1
qmax = z[4*i0]
emin = z[4*(i0+1)-2]
oldemn := z[4*(i0+1)-1]
for i4loop := 4 * (i0 + 1); i4loop <= 4*(n0-2); i4loop += 4 {
i4 := i4loop - 1
if z[i4] <= tol2*z[i4-3] || z[i4-1] <= tol2*sigma {
z[i4-1] = -sigma
splt = i4 / 4
qmax = 0
emin = z[i4+3]
oldemn = z[i4+4]
} else {
qmax = math.Max(qmax, z[i4+1])
emin = math.Min(emin, z[i4-1])
oldemn = math.Min(oldemn, z[i4])
}
}
z[4*(n0+1)-2] = emin
z[4*(n0+1)-1] = oldemn
i0 = splt + 1
}
}
}
// Maximum number of iterations exceeded, restore the shift
// sigma and place the new d's and e's in a qd array.
// This might need to be done for several blocks.
info = 2
i1 = i0
for {
tempq = z[4*i0]
z[4*i0] += sigma
for k := i0 + 1; k <= n0; k++ {
tempe := z[4*(k+1)-6]
z[4*(k+1)-6] *= tempq / z[4*(k+1)-8]
tempq = z[4*k]
z[4*k] += sigma + tempe - z[4*(k+1)-6]
}
// Prepare to do this on the previous block if there is one.
if i1 <= 0 {
break
}
n1 = i1 - 1
for i1 >= 1 && z[4*(i1+1)-6] >= 0 {
i1 -= 1
}
sigma = -z[4*(n1+1)-2]
}
for k := 0; k < n; k++ {
z[2*k] = z[4*k]
// Only the block 1..N0 is unfinished. The rest of the e's
// must be essentially zero, although sometimes other data
// has been stored in them.
if k < n0 {
z[2*(k+1)-1] = z[4*(k+1)-1]
} else {
z[2*(k+1)] = 0
}
}
return info
}
info = 3
return info
}
|