1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import "math"
// Dlasq3 checks for deflation, computes a shift (tau) and calls dqds.
// In case of failure it changes shifts, and tries again until output
// is positive.
//
// Dlasq3 is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dlasq3(i0, n0 int, z []float64, pp int, dmin, sigma, desig, qmax float64, nFail, iter, nDiv int, ttype int, dmin1, dmin2, dn, dn1, dn2, g, tau float64) (
i0Out, n0Out, ppOut int, dminOut, sigmaOut, desigOut, qmaxOut float64, nFailOut, iterOut, nDivOut, ttypeOut int, dmin1Out, dmin2Out, dnOut, dn1Out, dn2Out, gOut, tauOut float64) {
switch {
case i0 < 0:
panic(i0LT0)
case n0 < 0:
panic(n0LT0)
case len(z) < 4*n0:
panic(shortZ)
case pp != 0 && pp != 1 && pp != 2:
panic(badPp)
}
const cbias = 1.5
n0in := n0
eps := dlamchP
tol := eps * 100
tol2 := tol * tol
var nn int
var t float64
for {
if n0 < i0 {
return i0, n0, pp, dmin, sigma, desig, qmax, nFail, iter, nDiv, ttype, dmin1, dmin2, dn, dn1, dn2, g, tau
}
if n0 == i0 {
z[4*(n0+1)-4] = z[4*(n0+1)+pp-4] + sigma
n0--
continue
}
nn = 4*(n0+1) + pp - 1
if n0 != i0+1 {
// Check whether e[n0-1] is negligible, 1 eigenvalue.
if z[nn-5] > tol2*(sigma+z[nn-3]) && z[nn-2*pp-4] > tol2*z[nn-7] {
// Check whether e[n0-2] is negligible, 2 eigenvalues.
if z[nn-9] > tol2*sigma && z[nn-2*pp-8] > tol2*z[nn-11] {
break
}
} else {
z[4*(n0+1)-4] = z[4*(n0+1)+pp-4] + sigma
n0--
continue
}
}
if z[nn-3] > z[nn-7] {
z[nn-3], z[nn-7] = z[nn-7], z[nn-3]
}
t = 0.5 * (z[nn-7] - z[nn-3] + z[nn-5])
if z[nn-5] > z[nn-3]*tol2 && t != 0 {
s := z[nn-3] * (z[nn-5] / t)
if s <= t {
s = z[nn-3] * (z[nn-5] / (t * (1 + math.Sqrt(1+s/t))))
} else {
s = z[nn-3] * (z[nn-5] / (t + math.Sqrt(t)*math.Sqrt(t+s)))
}
t = z[nn-7] + (s + z[nn-5])
z[nn-3] *= z[nn-7] / t
z[nn-7] = t
}
z[4*(n0+1)-8] = z[nn-7] + sigma
z[4*(n0+1)-4] = z[nn-3] + sigma
n0 -= 2
}
if pp == 2 {
pp = 0
}
// Reverse the qd-array, if warranted.
if dmin <= 0 || n0 < n0in {
if cbias*z[4*(i0+1)+pp-4] < z[4*(n0+1)+pp-4] {
ipn4Out := 4 * (i0 + n0 + 2)
for j4loop := 4 * (i0 + 1); j4loop <= 2*((i0+1)+(n0+1)-1); j4loop += 4 {
ipn4 := ipn4Out - 1
j4 := j4loop - 1
z[j4-3], z[ipn4-j4-4] = z[ipn4-j4-4], z[j4-3]
z[j4-2], z[ipn4-j4-3] = z[ipn4-j4-3], z[j4-2]
z[j4-1], z[ipn4-j4-6] = z[ipn4-j4-6], z[j4-1]
z[j4], z[ipn4-j4-5] = z[ipn4-j4-5], z[j4]
}
if n0-i0 <= 4 {
z[4*(n0+1)+pp-2] = z[4*(i0+1)+pp-2]
z[4*(n0+1)-pp-1] = z[4*(i0+1)-pp-1]
}
dmin2 = math.Min(dmin2, z[4*(i0+1)-pp-2])
z[4*(n0+1)+pp-2] = math.Min(math.Min(z[4*(n0+1)+pp-2], z[4*(i0+1)+pp-2]), z[4*(i0+1)+pp+2])
z[4*(n0+1)-pp-1] = math.Min(math.Min(z[4*(n0+1)-pp-1], z[4*(i0+1)-pp-1]), z[4*(i0+1)-pp+3])
qmax = math.Max(math.Max(qmax, z[4*(i0+1)+pp-4]), z[4*(i0+1)+pp])
dmin = math.Copysign(0, -1) // Fortran code has -zero, but -0 in go is 0
}
}
// Choose a shift.
tau, ttype, g = impl.Dlasq4(i0, n0, z, pp, n0in, dmin, dmin1, dmin2, dn, dn1, dn2, tau, ttype, g)
// Call dqds until dmin > 0.
loop:
for {
i0, n0, pp, tau, sigma, dmin, dmin1, dmin2, dn, dn1, dn2 = impl.Dlasq5(i0, n0, z, pp, tau, sigma)
nDiv += n0 - i0 + 2
iter++
switch {
case dmin >= 0 && dmin1 >= 0:
// Success.
goto done
case dmin < 0 && dmin1 > 0 && z[4*n0-pp-1] < tol*(sigma+dn1) && math.Abs(dn) < tol*sigma:
// Convergence hidden by negative dn.
z[4*n0-pp+1] = 0
dmin = 0
goto done
case dmin < 0:
// Tau too big. Select new Tau and try again.
nFail++
if ttype < -22 {
// Failed twice. Play it safe.
tau = 0
} else if dmin1 > 0 {
// Late failure. Gives excellent shift.
tau = (tau + dmin) * (1 - 2*eps)
ttype -= 11
} else {
// Early failure. Divide by 4.
tau = tau / 4
ttype -= 12
}
case math.IsNaN(dmin):
if tau == 0 {
break loop
}
tau = 0
default:
// Possible underflow. Play it safe.
break loop
}
}
// Risk of underflow.
dmin, dmin1, dmin2, dn, dn1, dn2 = impl.Dlasq6(i0, n0, z, pp)
nDiv += n0 - i0 + 2
iter++
tau = 0
done:
if tau < sigma {
desig += tau
t = sigma + desig
desig -= t - sigma
} else {
t = sigma + tau
desig += sigma - (t - tau)
}
sigma = t
return i0, n0, pp, dmin, sigma, desig, qmax, nFail, iter, nDiv, ttype, dmin1, dmin2, dn, dn1, dn2, g, tau
}
|