1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import "math"
// Dlasq4 computes an approximation to the smallest eigenvalue using values of d
// from the previous transform.
// i0, n0, and n0in are zero-indexed.
//
// Dlasq4 is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dlasq4(i0, n0 int, z []float64, pp int, n0in int, dmin, dmin1, dmin2, dn, dn1, dn2, tau float64, ttype int, g float64) (tauOut float64, ttypeOut int, gOut float64) {
switch {
case i0 < 0:
panic(i0LT0)
case n0 < 0:
panic(n0LT0)
case len(z) < 4*n0:
panic(shortZ)
case pp != 0 && pp != 1:
panic(badPp)
}
const (
cnst1 = 0.563
cnst2 = 1.01
cnst3 = 1.05
cnstthird = 0.333 // TODO(btracey): Fix?
)
// A negative dmin forces the shift to take that absolute value
// ttype records the type of shift.
if dmin <= 0 {
tau = -dmin
ttype = -1
return tau, ttype, g
}
nn := 4*(n0+1) + pp - 1 // -1 for zero indexing
s := math.NaN() // Poison s so that failure to take a path below is obvious
if n0in == n0 {
// No eigenvalues deflated.
if dmin == dn || dmin == dn1 {
b1 := math.Sqrt(z[nn-3]) * math.Sqrt(z[nn-5])
b2 := math.Sqrt(z[nn-7]) * math.Sqrt(z[nn-9])
a2 := z[nn-7] + z[nn-5]
if dmin == dn && dmin1 == dn1 {
gap2 := dmin2 - a2 - dmin2/4
var gap1 float64
if gap2 > 0 && gap2 > b2 {
gap1 = a2 - dn - (b2/gap2)*b2
} else {
gap1 = a2 - dn - (b1 + b2)
}
if gap1 > 0 && gap1 > b1 {
s = math.Max(dn-(b1/gap1)*b1, 0.5*dmin)
ttype = -2
} else {
s = 0
if dn > b1 {
s = dn - b1
}
if a2 > b1+b2 {
s = math.Min(s, a2-(b1+b2))
}
s = math.Max(s, cnstthird*dmin)
ttype = -3
}
} else {
ttype = -4
s = dmin / 4
var gam float64
var np int
if dmin == dn {
gam = dn
a2 = 0
if z[nn-5] > z[nn-7] {
return tau, ttype, g
}
b2 = z[nn-5] / z[nn-7]
np = nn - 9
} else {
np = nn - 2*pp
gam = dn1
if z[np-4] > z[np-2] {
return tau, ttype, g
}
a2 = z[np-4] / z[np-2]
if z[nn-9] > z[nn-11] {
return tau, ttype, g
}
b2 = z[nn-9] / z[nn-11]
np = nn - 13
}
// Approximate contribution to norm squared from i < nn-1.
a2 += b2
for i4loop := np + 1; i4loop >= 4*(i0+1)-1+pp; i4loop -= 4 {
i4 := i4loop - 1
if b2 == 0 {
break
}
b1 = b2
if z[i4] > z[i4-2] {
return tau, ttype, g
}
b2 *= z[i4] / z[i4-2]
a2 += b2
if 100*math.Max(b2, b1) < a2 || cnst1 < a2 {
break
}
}
a2 *= cnst3
// Rayleigh quotient residual bound.
if a2 < cnst1 {
s = gam * (1 - math.Sqrt(a2)) / (1 + a2)
}
}
} else if dmin == dn2 {
ttype = -5
s = dmin / 4
// Compute contribution to norm squared from i > nn-2.
np := nn - 2*pp
b1 := z[np-2]
b2 := z[np-6]
gam := dn2
if z[np-8] > b2 || z[np-4] > b1 {
return tau, ttype, g
}
a2 := (z[np-8] / b2) * (1 + z[np-4]/b1)
// Approximate contribution to norm squared from i < nn-2.
if n0-i0 > 2 {
b2 = z[nn-13] / z[nn-15]
a2 += b2
for i4loop := (nn + 1) - 17; i4loop >= 4*(i0+1)-1+pp; i4loop -= 4 {
i4 := i4loop - 1
if b2 == 0 {
break
}
b1 = b2
if z[i4] > z[i4-2] {
return tau, ttype, g
}
b2 *= z[i4] / z[i4-2]
a2 += b2
if 100*math.Max(b2, b1) < a2 || cnst1 < a2 {
break
}
}
a2 *= cnst3
}
if a2 < cnst1 {
s = gam * (1 - math.Sqrt(a2)) / (1 + a2)
}
} else {
// Case 6, no information to guide us.
if ttype == -6 {
g += cnstthird * (1 - g)
} else if ttype == -18 {
g = cnstthird / 4
} else {
g = 1.0 / 4
}
s = g * dmin
ttype = -6
}
} else if n0in == (n0 + 1) {
// One eigenvalue just deflated. Use DMIN1, DN1 for DMIN and DN.
if dmin1 == dn1 && dmin2 == dn2 {
ttype = -7
s = cnstthird * dmin1
if z[nn-5] > z[nn-7] {
return tau, ttype, g
}
b1 := z[nn-5] / z[nn-7]
b2 := b1
if b2 != 0 {
for i4loop := 4*(n0+1) - 9 + pp; i4loop >= 4*(i0+1)-1+pp; i4loop -= 4 {
i4 := i4loop - 1
a2 := b1
if z[i4] > z[i4-2] {
return tau, ttype, g
}
b1 *= z[i4] / z[i4-2]
b2 += b1
if 100*math.Max(b1, a2) < b2 {
break
}
}
}
b2 = math.Sqrt(cnst3 * b2)
a2 := dmin1 / (1 + b2*b2)
gap2 := 0.5*dmin2 - a2
if gap2 > 0 && gap2 > b2*a2 {
s = math.Max(s, a2*(1-cnst2*a2*(b2/gap2)*b2))
} else {
s = math.Max(s, a2*(1-cnst2*b2))
ttype = -8
}
} else {
s = dmin1 / 4
if dmin1 == dn1 {
s = 0.5 * dmin1
}
ttype = -9
}
} else if n0in == (n0 + 2) {
// Two eigenvalues deflated. Use DMIN2, DN2 for DMIN and DN.
if dmin2 == dn2 && 2*z[nn-5] < z[nn-7] {
ttype = -10
s = cnstthird * dmin2
if z[nn-5] > z[nn-7] {
return tau, ttype, g
}
b1 := z[nn-5] / z[nn-7]
b2 := b1
if b2 != 0 {
for i4loop := 4*(n0+1) - 9 + pp; i4loop >= 4*(i0+1)-1+pp; i4loop -= 4 {
i4 := i4loop - 1
if z[i4] > z[i4-2] {
return tau, ttype, g
}
b1 *= z[i4] / z[i4-2]
b2 += b1
if 100*b1 < b2 {
break
}
}
}
b2 = math.Sqrt(cnst3 * b2)
a2 := dmin2 / (1 + b2*b2)
gap2 := z[nn-7] + z[nn-9] - math.Sqrt(z[nn-11])*math.Sqrt(z[nn-9]) - a2
if gap2 > 0 && gap2 > b2*a2 {
s = math.Max(s, a2*(1-cnst2*a2*(b2/gap2)*b2))
} else {
s = math.Max(s, a2*(1-cnst2*b2))
}
} else {
s = dmin2 / 4
ttype = -11
}
} else if n0in > n0+2 {
// Case 12, more than two eigenvalues deflated. No information.
s = 0
ttype = -12
}
tau = s
return tau, ttype, g
}
|