1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"math"
"gonum.org/v1/gonum/blas/blas64"
)
// Dlasy2 solves the Sylvester matrix equation where the matrices are of order 1
// or 2. It computes the unknown n1×n2 matrix X so that
//
// TL*X + sgn*X*TR = scale*B if tranl == false and tranr == false,
// TLᵀ*X + sgn*X*TR = scale*B if tranl == true and tranr == false,
// TL*X + sgn*X*TRᵀ = scale*B if tranl == false and tranr == true,
// TLᵀ*X + sgn*X*TRᵀ = scale*B if tranl == true and tranr == true,
//
// where TL is n1×n1, TR is n2×n2, B is n1×n2, and 1 <= n1,n2 <= 2.
//
// isgn must be 1 or -1, and n1 and n2 must be 0, 1, or 2, but these conditions
// are not checked.
//
// Dlasy2 returns three values, a scale factor that is chosen less than or equal
// to 1 to prevent the solution overflowing, the infinity norm of the solution,
// and an indicator of success. If ok is false, TL and TR have eigenvalues that
// are too close, so TL or TR is perturbed to get a non-singular equation.
//
// Dlasy2 is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dlasy2(tranl, tranr bool, isgn, n1, n2 int, tl []float64, ldtl int, tr []float64, ldtr int, b []float64, ldb int, x []float64, ldx int) (scale, xnorm float64, ok bool) {
// TODO(vladimir-ch): Add input validation checks conditionally skipped
// using the build tag mechanism.
ok = true
// Quick return if possible.
if n1 == 0 || n2 == 0 {
return scale, xnorm, ok
}
// Set constants to control overflow.
eps := dlamchP
smlnum := dlamchS / eps
sgn := float64(isgn)
if n1 == 1 && n2 == 1 {
// 1×1 case: TL11*X + sgn*X*TR11 = B11.
tau1 := tl[0] + sgn*tr[0]
bet := math.Abs(tau1)
if bet <= smlnum {
tau1 = smlnum
bet = smlnum
ok = false
}
scale = 1
gam := math.Abs(b[0])
if smlnum*gam > bet {
scale = 1 / gam
}
x[0] = b[0] * scale / tau1
xnorm = math.Abs(x[0])
return scale, xnorm, ok
}
if n1+n2 == 3 {
// 1×2 or 2×1 case.
var (
smin float64
tmp [4]float64 // tmp is used as a 2×2 row-major matrix.
btmp [2]float64
)
if n1 == 1 && n2 == 2 {
// 1×2 case: TL11*[X11 X12] + sgn*[X11 X12]*op[TR11 TR12] = [B11 B12].
// [TR21 TR22]
smin = math.Abs(tl[0])
smin = math.Max(smin, math.Max(math.Abs(tr[0]), math.Abs(tr[1])))
smin = math.Max(smin, math.Max(math.Abs(tr[ldtr]), math.Abs(tr[ldtr+1])))
smin = math.Max(eps*smin, smlnum)
tmp[0] = tl[0] + sgn*tr[0]
tmp[3] = tl[0] + sgn*tr[ldtr+1]
if tranr {
tmp[1] = sgn * tr[1]
tmp[2] = sgn * tr[ldtr]
} else {
tmp[1] = sgn * tr[ldtr]
tmp[2] = sgn * tr[1]
}
btmp[0] = b[0]
btmp[1] = b[1]
} else {
// 2×1 case: op[TL11 TL12]*[X11] + sgn*[X11]*TR11 = [B11].
// [TL21 TL22]*[X21] [X21] [B21]
smin = math.Abs(tr[0])
smin = math.Max(smin, math.Max(math.Abs(tl[0]), math.Abs(tl[1])))
smin = math.Max(smin, math.Max(math.Abs(tl[ldtl]), math.Abs(tl[ldtl+1])))
smin = math.Max(eps*smin, smlnum)
tmp[0] = tl[0] + sgn*tr[0]
tmp[3] = tl[ldtl+1] + sgn*tr[0]
if tranl {
tmp[1] = tl[ldtl]
tmp[2] = tl[1]
} else {
tmp[1] = tl[1]
tmp[2] = tl[ldtl]
}
btmp[0] = b[0]
btmp[1] = b[ldb]
}
// Solve 2×2 system using complete pivoting.
// Set pivots less than smin to smin.
bi := blas64.Implementation()
ipiv := bi.Idamax(len(tmp), tmp[:], 1)
// Compute the upper triangular matrix [u11 u12].
// [ 0 u22]
u11 := tmp[ipiv]
if math.Abs(u11) <= smin {
ok = false
u11 = smin
}
locu12 := [4]int{1, 0, 3, 2} // Index in tmp of the element on the same row as the pivot.
u12 := tmp[locu12[ipiv]]
locl21 := [4]int{2, 3, 0, 1} // Index in tmp of the element on the same column as the pivot.
l21 := tmp[locl21[ipiv]] / u11
locu22 := [4]int{3, 2, 1, 0} // Index in tmp of the remaining element.
u22 := tmp[locu22[ipiv]] - l21*u12
if math.Abs(u22) <= smin {
ok = false
u22 = smin
}
if ipiv&0x2 != 0 { // true for ipiv equal to 2 and 3.
// The pivot was in the second row, swap the elements of
// the right-hand side.
btmp[0], btmp[1] = btmp[1], btmp[0]-l21*btmp[1]
} else {
btmp[1] -= l21 * btmp[0]
}
scale = 1
if 2*smlnum*math.Abs(btmp[1]) > math.Abs(u22) || 2*smlnum*math.Abs(btmp[0]) > math.Abs(u11) {
scale = 0.5 / math.Max(math.Abs(btmp[0]), math.Abs(btmp[1]))
btmp[0] *= scale
btmp[1] *= scale
}
// Solve the system [u11 u12] [x21] = [ btmp[0] ].
// [ 0 u22] [x22] [ btmp[1] ]
x22 := btmp[1] / u22
x21 := btmp[0]/u11 - (u12/u11)*x22
if ipiv&0x1 != 0 { // true for ipiv equal to 1 and 3.
// The pivot was in the second column, swap the elements
// of the solution.
x21, x22 = x22, x21
}
x[0] = x21
if n1 == 1 {
x[1] = x22
xnorm = math.Abs(x[0]) + math.Abs(x[1])
} else {
x[ldx] = x22
xnorm = math.Max(math.Abs(x[0]), math.Abs(x[ldx]))
}
return scale, xnorm, ok
}
// 2×2 case: op[TL11 TL12]*[X11 X12] + SGN*[X11 X12]*op[TR11 TR12] = [B11 B12].
// [TL21 TL22] [X21 X22] [X21 X22] [TR21 TR22] [B21 B22]
//
// Solve equivalent 4×4 system using complete pivoting.
// Set pivots less than smin to smin.
smin := math.Max(math.Abs(tr[0]), math.Abs(tr[1]))
smin = math.Max(smin, math.Max(math.Abs(tr[ldtr]), math.Abs(tr[ldtr+1])))
smin = math.Max(smin, math.Max(math.Abs(tl[0]), math.Abs(tl[1])))
smin = math.Max(smin, math.Max(math.Abs(tl[ldtl]), math.Abs(tl[ldtl+1])))
smin = math.Max(eps*smin, smlnum)
var t [4][4]float64
t[0][0] = tl[0] + sgn*tr[0]
t[1][1] = tl[0] + sgn*tr[ldtr+1]
t[2][2] = tl[ldtl+1] + sgn*tr[0]
t[3][3] = tl[ldtl+1] + sgn*tr[ldtr+1]
if tranl {
t[0][2] = tl[ldtl]
t[1][3] = tl[ldtl]
t[2][0] = tl[1]
t[3][1] = tl[1]
} else {
t[0][2] = tl[1]
t[1][3] = tl[1]
t[2][0] = tl[ldtl]
t[3][1] = tl[ldtl]
}
if tranr {
t[0][1] = sgn * tr[1]
t[1][0] = sgn * tr[ldtr]
t[2][3] = sgn * tr[1]
t[3][2] = sgn * tr[ldtr]
} else {
t[0][1] = sgn * tr[ldtr]
t[1][0] = sgn * tr[1]
t[2][3] = sgn * tr[ldtr]
t[3][2] = sgn * tr[1]
}
var btmp [4]float64
btmp[0] = b[0]
btmp[1] = b[1]
btmp[2] = b[ldb]
btmp[3] = b[ldb+1]
// Perform elimination.
var jpiv [4]int // jpiv records any column swaps for pivoting.
for i := 0; i < 3; i++ {
var (
xmax float64
ipsv, jpsv int
)
for ip := i; ip < 4; ip++ {
for jp := i; jp < 4; jp++ {
if math.Abs(t[ip][jp]) >= xmax {
xmax = math.Abs(t[ip][jp])
ipsv = ip
jpsv = jp
}
}
}
if ipsv != i {
// The pivot is not in the top row of the unprocessed
// block, swap rows ipsv and i of t and btmp.
t[ipsv], t[i] = t[i], t[ipsv]
btmp[ipsv], btmp[i] = btmp[i], btmp[ipsv]
}
if jpsv != i {
// The pivot is not in the left column of the
// unprocessed block, swap columns jpsv and i of t.
for k := 0; k < 4; k++ {
t[k][jpsv], t[k][i] = t[k][i], t[k][jpsv]
}
}
jpiv[i] = jpsv
if math.Abs(t[i][i]) < smin {
ok = false
t[i][i] = smin
}
for k := i + 1; k < 4; k++ {
t[k][i] /= t[i][i]
btmp[k] -= t[k][i] * btmp[i]
for j := i + 1; j < 4; j++ {
t[k][j] -= t[k][i] * t[i][j]
}
}
}
if math.Abs(t[3][3]) < smin {
ok = false
t[3][3] = smin
}
scale = 1
if 8*smlnum*math.Abs(btmp[0]) > math.Abs(t[0][0]) ||
8*smlnum*math.Abs(btmp[1]) > math.Abs(t[1][1]) ||
8*smlnum*math.Abs(btmp[2]) > math.Abs(t[2][2]) ||
8*smlnum*math.Abs(btmp[3]) > math.Abs(t[3][3]) {
maxbtmp := math.Max(math.Abs(btmp[0]), math.Abs(btmp[1]))
maxbtmp = math.Max(maxbtmp, math.Max(math.Abs(btmp[2]), math.Abs(btmp[3])))
scale = (1.0 / 8.0) / maxbtmp
btmp[0] *= scale
btmp[1] *= scale
btmp[2] *= scale
btmp[3] *= scale
}
// Compute the solution of the upper triangular system t * tmp = btmp.
var tmp [4]float64
for i := 3; i >= 0; i-- {
temp := 1 / t[i][i]
tmp[i] = btmp[i] * temp
for j := i + 1; j < 4; j++ {
tmp[i] -= temp * t[i][j] * tmp[j]
}
}
for i := 2; i >= 0; i-- {
if jpiv[i] != i {
tmp[i], tmp[jpiv[i]] = tmp[jpiv[i]], tmp[i]
}
}
x[0] = tmp[0]
x[1] = tmp[1]
x[ldx] = tmp[2]
x[ldx+1] = tmp[3]
xnorm = math.Max(math.Abs(tmp[0])+math.Abs(tmp[1]), math.Abs(tmp[2])+math.Abs(tmp[3]))
return scale, xnorm, ok
}
|