File: dorg2l.go

package info (click to toggle)
golang-gonum-v1-gonum 0.15.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,792 kB
  • sloc: asm: 6,252; fortran: 5,271; sh: 377; ruby: 211; makefile: 98
file content (78 lines) | stat: -rw-r--r-- 1,835 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package gonum

import (
	"gonum.org/v1/gonum/blas"
	"gonum.org/v1/gonum/blas/blas64"
)

// Dorg2l generates an m×n matrix Q with orthonormal columns which is defined
// as the last n columns of a product of k elementary reflectors of order m.
//
//	Q = H_{k-1} * ... * H_1 * H_0
//
// See Dgelqf for more information. It must be that m >= n >= k.
//
// tau contains the scalar reflectors computed by Dgeqlf. tau must have length
// at least k, and Dorg2l will panic otherwise.
//
// work contains temporary memory, and must have length at least n. Dorg2l will
// panic otherwise.
//
// Dorg2l is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dorg2l(m, n, k int, a []float64, lda int, tau, work []float64) {
	switch {
	case m < 0:
		panic(mLT0)
	case n < 0:
		panic(nLT0)
	case n > m:
		panic(nGTM)
	case k < 0:
		panic(kLT0)
	case k > n:
		panic(kGTN)
	case lda < max(1, n):
		panic(badLdA)
	}

	if n == 0 {
		return
	}

	switch {
	case len(a) < (m-1)*lda+n:
		panic(shortA)
	case len(tau) < k:
		panic(shortTau)
	case len(work) < n:
		panic(shortWork)
	}

	// Initialize columns 0:n-k to columns of the unit matrix.
	for j := 0; j < n-k; j++ {
		for l := 0; l < m; l++ {
			a[l*lda+j] = 0
		}
		a[(m-n+j)*lda+j] = 1
	}

	bi := blas64.Implementation()
	for i := 0; i < k; i++ {
		ii := n - k + i

		// Apply H_i to A[0:m-k+i, 0:n-k+i] from the left.
		a[(m-n+ii)*lda+ii] = 1
		impl.Dlarf(blas.Left, m-n+ii+1, ii, a[ii:], lda, tau[i], a, lda, work)
		bi.Dscal(m-n+ii, -tau[i], a[ii:], lda)
		a[(m-n+ii)*lda+ii] = 1 - tau[i]

		// Set A[m-k+i:m, n-k+i+1] to zero.
		for l := m - n + ii + 1; l < m; l++ {
			a[l*lda+ii] = 0
		}
	}
}