1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/lapack"
)
// Dormqr multiplies an m×n matrix C by an orthogonal matrix Q as
//
// C = Q * C if side == blas.Left and trans == blas.NoTrans,
// C = Qᵀ * C if side == blas.Left and trans == blas.Trans,
// C = C * Q if side == blas.Right and trans == blas.NoTrans,
// C = C * Qᵀ if side == blas.Right and trans == blas.Trans,
//
// where Q is defined as the product of k elementary reflectors
//
// Q = H_0 * H_1 * ... * H_{k-1}.
//
// If side == blas.Left, A is an m×k matrix and 0 <= k <= m.
// If side == blas.Right, A is an n×k matrix and 0 <= k <= n.
// The ith column of A contains the vector which defines the elementary
// reflector H_i and tau[i] contains its scalar factor. tau must have length k
// and Dormqr will panic otherwise. Dgeqrf returns A and tau in the required
// form.
//
// work must have length at least max(1,lwork), and lwork must be at least n if
// side == blas.Left and at least m if side == blas.Right, otherwise Dormqr will
// panic.
//
// work is temporary storage, and lwork specifies the usable memory length. At
// minimum, lwork >= m if side == blas.Left and lwork >= n if side ==
// blas.Right, and this function will panic otherwise. Larger values of lwork
// will generally give better performance. On return, work[0] will contain the
// optimal value of lwork.
//
// If lwork is -1, instead of performing Dormqr, the optimal workspace size will
// be stored into work[0].
func (impl Implementation) Dormqr(side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64, lwork int) {
left := side == blas.Left
nq := n
nw := m
if left {
nq = m
nw = n
}
switch {
case !left && side != blas.Right:
panic(badSide)
case trans != blas.NoTrans && trans != blas.Trans:
panic(badTrans)
case m < 0:
panic(mLT0)
case n < 0:
panic(nLT0)
case k < 0:
panic(kLT0)
case left && k > m:
panic(kGTM)
case !left && k > n:
panic(kGTN)
case lda < max(1, k):
panic(badLdA)
case ldc < max(1, n):
panic(badLdC)
case lwork < max(1, nw) && lwork != -1:
panic(badLWork)
case len(work) < max(1, lwork):
panic(shortWork)
}
// Quick return if possible.
if m == 0 || n == 0 || k == 0 {
work[0] = 1
return
}
const (
nbmax = 64
ldt = nbmax
tsize = nbmax * ldt
)
opts := string(side) + string(trans)
nb := min(nbmax, impl.Ilaenv(1, "DORMQR", opts, m, n, k, -1))
lworkopt := max(1, nw)*nb + tsize
if lwork == -1 {
work[0] = float64(lworkopt)
return
}
switch {
case len(a) < (nq-1)*lda+k:
panic(shortA)
case len(tau) != k:
panic(badLenTau)
case len(c) < (m-1)*ldc+n:
panic(shortC)
}
nbmin := 2
if 1 < nb && nb < k {
if lwork < nw*nb+tsize {
nb = (lwork - tsize) / nw
nbmin = max(2, impl.Ilaenv(2, "DORMQR", opts, m, n, k, -1))
}
}
if nb < nbmin || k <= nb {
// Call unblocked code.
impl.Dorm2r(side, trans, m, n, k, a, lda, tau, c, ldc, work)
work[0] = float64(lworkopt)
return
}
var (
ldwork = nb
notrans = trans == blas.NoTrans
)
switch {
case left && notrans:
for i := ((k - 1) / nb) * nb; i >= 0; i -= nb {
ib := min(nb, k-i)
impl.Dlarft(lapack.Forward, lapack.ColumnWise, m-i, ib,
a[i*lda+i:], lda,
tau[i:],
work[:tsize], ldt)
impl.Dlarfb(side, trans, lapack.Forward, lapack.ColumnWise, m-i, n, ib,
a[i*lda+i:], lda,
work[:tsize], ldt,
c[i*ldc:], ldc,
work[tsize:], ldwork)
}
case left && !notrans:
for i := 0; i < k; i += nb {
ib := min(nb, k-i)
impl.Dlarft(lapack.Forward, lapack.ColumnWise, m-i, ib,
a[i*lda+i:], lda,
tau[i:],
work[:tsize], ldt)
impl.Dlarfb(side, trans, lapack.Forward, lapack.ColumnWise, m-i, n, ib,
a[i*lda+i:], lda,
work[:tsize], ldt,
c[i*ldc:], ldc,
work[tsize:], ldwork)
}
case !left && notrans:
for i := 0; i < k; i += nb {
ib := min(nb, k-i)
impl.Dlarft(lapack.Forward, lapack.ColumnWise, n-i, ib,
a[i*lda+i:], lda,
tau[i:],
work[:tsize], ldt)
impl.Dlarfb(side, trans, lapack.Forward, lapack.ColumnWise, m, n-i, ib,
a[i*lda+i:], lda,
work[:tsize], ldt,
c[i:], ldc,
work[tsize:], ldwork)
}
case !left && !notrans:
for i := ((k - 1) / nb) * nb; i >= 0; i -= nb {
ib := min(nb, k-i)
impl.Dlarft(lapack.Forward, lapack.ColumnWise, n-i, ib,
a[i*lda+i:], lda,
tau[i:],
work[:tsize], ldt)
impl.Dlarfb(side, trans, lapack.Forward, lapack.ColumnWise, m, n-i, ib,
a[i*lda+i:], lda,
work[:tsize], ldt,
c[i:], ldc,
work[tsize:], ldwork)
}
}
work[0] = float64(lworkopt)
}
|