1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
// Copyright ©2019 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
)
// Dpbtrf computes the Cholesky factorization of an n×n symmetric positive
// definite band matrix
//
// A = Uᵀ * U if uplo == blas.Upper
// A = L * Lᵀ if uplo == blas.Lower
//
// where U is an upper triangular band matrix and L is lower triangular. kd is
// the number of super- or sub-diagonals of A.
//
// The band storage scheme is illustrated below when n = 6 and kd = 2. Elements
// marked * are not used by the function.
//
// uplo == blas.Upper
// On entry: On return:
// a00 a01 a02 u00 u01 u02
// a11 a12 a13 u11 u12 u13
// a22 a23 a24 u22 u23 u24
// a33 a34 a35 u33 u34 u35
// a44 a45 * u44 u45 *
// a55 * * u55 * *
//
// uplo == blas.Lower
// On entry: On return:
// * * a00 * * l00
// * a10 a11 * l10 l11
// a20 a21 a22 l20 l21 l22
// a31 a32 a33 l31 l32 l33
// a42 a43 a44 l42 l43 l44
// a53 a54 a55 l53 l54 l55
func (impl Implementation) Dpbtrf(uplo blas.Uplo, n, kd int, ab []float64, ldab int) (ok bool) {
const nbmax = 32
switch {
case uplo != blas.Upper && uplo != blas.Lower:
panic(badUplo)
case n < 0:
panic(nLT0)
case kd < 0:
panic(kdLT0)
case ldab < kd+1:
panic(badLdA)
}
// Quick return if possible.
if n == 0 {
return true
}
if len(ab) < (n-1)*ldab+kd+1 {
panic(shortAB)
}
opts := string(blas.Upper)
if uplo == blas.Lower {
opts = string(blas.Lower)
}
nb := impl.Ilaenv(1, "DPBTRF", opts, n, kd, -1, -1)
// The block size must not exceed the semi-bandwidth kd, and must not
// exceed the limit set by the size of the local array work.
nb = min(nb, nbmax)
if nb <= 1 || kd < nb {
// Use unblocked code.
return impl.Dpbtf2(uplo, n, kd, ab, ldab)
}
// Use blocked code.
ldwork := nb
work := make([]float64, nb*ldwork)
bi := blas64.Implementation()
if uplo == blas.Upper {
// Compute the Cholesky factorization of a symmetric band
// matrix, given the upper triangle of the matrix in band
// storage.
// Process the band matrix one diagonal block at a time.
for i := 0; i < n; i += nb {
ib := min(nb, n-i)
// Factorize the diagonal block.
ok := impl.Dpotf2(uplo, ib, ab[i*ldab:], ldab-1)
if !ok {
return false
}
if i+ib >= n {
continue
}
// Update the relevant part of the trailing submatrix.
// If A11 denotes the diagonal block which has just been
// factorized, then we need to update the remaining
// blocks in the diagram:
//
// A11 A12 A13
// A22 A23
// A33
//
// The numbers of rows and columns in the partitioning
// are ib, i2, i3 respectively. The blocks A12, A22 and
// A23 are empty if ib = kd. The upper triangle of A13
// lies outside the band.
i2 := min(kd-ib, n-i-ib)
if i2 > 0 {
// Update A12.
bi.Dtrsm(blas.Left, blas.Upper, blas.Trans, blas.NonUnit, ib, i2,
1, ab[i*ldab:], ldab-1, ab[i*ldab+ib:], ldab-1)
// Update A22.
bi.Dsyrk(blas.Upper, blas.Trans, i2, ib,
-1, ab[i*ldab+ib:], ldab-1, 1, ab[(i+ib)*ldab:], ldab-1)
}
i3 := min(ib, n-i-kd)
if i3 > 0 {
// Copy the lower triangle of A13 into the work array.
for ii := 0; ii < ib; ii++ {
for jj := 0; jj <= min(ii, i3-1); jj++ {
work[ii*ldwork+jj] = ab[(i+ii)*ldab+kd-ii+jj]
}
}
// Update A13 (in the work array).
bi.Dtrsm(blas.Left, blas.Upper, blas.Trans, blas.NonUnit, ib, i3,
1, ab[i*ldab:], ldab-1, work, ldwork)
// Update A23.
if i2 > 0 {
bi.Dgemm(blas.Trans, blas.NoTrans, i2, i3, ib,
-1, ab[i*ldab+ib:], ldab-1, work, ldwork,
1, ab[(i+ib)*ldab+kd-ib:], ldab-1)
}
// Update A33.
bi.Dsyrk(blas.Upper, blas.Trans, i3, ib,
-1, work, ldwork, 1, ab[(i+kd)*ldab:], ldab-1)
// Copy the lower triangle of A13 back into place.
for ii := 0; ii < ib; ii++ {
for jj := 0; jj <= min(ii, i3-1); jj++ {
ab[(i+ii)*ldab+kd-ii+jj] = work[ii*ldwork+jj]
}
}
}
}
} else {
// Compute the Cholesky factorization of a symmetric band
// matrix, given the lower triangle of the matrix in band
// storage.
// Process the band matrix one diagonal block at a time.
for i := 0; i < n; i += nb {
ib := min(nb, n-i)
// Factorize the diagonal block.
ok := impl.Dpotf2(uplo, ib, ab[i*ldab+kd:], ldab-1)
if !ok {
return false
}
if i+ib >= n {
continue
}
// Update the relevant part of the trailing submatrix.
// If A11 denotes the diagonal block which has just been
// factorized, then we need to update the remaining
// blocks in the diagram:
//
// A11
// A21 A22
// A31 A32 A33
//
// The numbers of rows and columns in the partitioning
// are ib, i2, i3 respectively. The blocks A21, A22 and
// A32 are empty if ib = kd. The lowr triangle of A31
// lies outside the band.
i2 := min(kd-ib, n-i-ib)
if i2 > 0 {
// Update A21.
bi.Dtrsm(blas.Right, blas.Lower, blas.Trans, blas.NonUnit, i2, ib,
1, ab[i*ldab+kd:], ldab-1, ab[(i+ib)*ldab+kd-ib:], ldab-1)
// Update A22.
bi.Dsyrk(blas.Lower, blas.NoTrans, i2, ib,
-1, ab[(i+ib)*ldab+kd-ib:], ldab-1, 1, ab[(i+ib)*ldab+kd:], ldab-1)
}
i3 := min(ib, n-i-kd)
if i3 > 0 {
// Copy the upper triangle of A31 into the work array.
for ii := 0; ii < i3; ii++ {
for jj := ii; jj < ib; jj++ {
work[ii*ldwork+jj] = ab[(ii+i+kd)*ldab+jj-ii]
}
}
// Update A31 (in the work array).
bi.Dtrsm(blas.Right, blas.Lower, blas.Trans, blas.NonUnit, i3, ib,
1, ab[i*ldab+kd:], ldab-1, work, ldwork)
// Update A32.
if i2 > 0 {
bi.Dgemm(blas.NoTrans, blas.Trans, i3, i2, ib,
-1, work, ldwork, ab[(i+ib)*ldab+kd-ib:], ldab-1,
1, ab[(i+kd)*ldab+ib:], ldab-1)
}
// Update A33.
bi.Dsyrk(blas.Lower, blas.NoTrans, i3, ib,
-1, work, ldwork, 1, ab[(i+kd)*ldab+kd:], ldab-1)
// Copy the upper triangle of A31 back into place.
for ii := 0; ii < i3; ii++ {
for jj := ii; jj < ib; jj++ {
ab[(ii+i+kd)*ldab+jj-ii] = work[ii*ldwork+jj]
}
}
}
}
}
return true
}
|