1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
|
// Copyright ©2023 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"math"
"gonum.org/v1/gonum/blas/blas64"
)
// Dptcon computes and returns the reciprocal of the condition number (in the
// 1-norm) of a symmetric positive definite tridiagonal matrix A using the
// factorization A = L*D*Lᵀ or A = Uᵀ*D*U computed by Dpttrf.
//
// The reciprocal of the condition number is computed as
//
// rcond = 1 / (anorm * ‖A⁻¹‖)
//
// and ‖A⁻¹‖ is computed by a direct method.
//
// d and e contain, respectively, the n diagonal elements of the diagonal matrix
// D and the (n-1) off-diagonal elements of the unit bidiagonal factor U or L
// from the factorization of A, as computed by Dpttrf.
//
// anorm is the 1-norm of the original matrix A.
//
// work must have length n, otherwise Dptcon will panic.
func (impl Implementation) Dptcon(n int, d, e []float64, anorm float64, work []float64) (rcond float64) {
switch {
case n < 0:
panic(nLT0)
case anorm < 0:
panic(badNorm)
}
// Quick return if possible.
if n == 0 {
return 1
}
switch {
case len(d) < n:
panic(shortD)
case len(e) < n-1:
panic(shortE)
case len(work) < n:
panic(shortWork)
}
// Quick return if possible.
switch {
case anorm == 0:
return 0
case math.IsNaN(anorm):
// Propagate NaN.
return anorm
case math.IsInf(anorm, 1):
return 0
}
// Check that d[0:n] is positive.
for _, di := range d[:n] {
if di <= 0 {
return 0
}
}
// Solve M(A) * x = e, where M(A) = (m[i,j]) is given by
//
// m[i,j] = abs(A[i,j]), i == j,
// m[i,j] = -abs(A[i,j]), i != j,
//
// and e = [1,1,...,1]ᵀ. Note M(A) = M(L)*D*M(L)ᵀ.
// Solve M(L) * b = e.
work[0] = 1
for i := 1; i < n; i++ {
work[i] = 1 + work[i-1]*math.Abs(e[i-1])
}
// Solve D * M(L)ᵀ * x = b.
work[n-1] /= d[n-1]
for i := n - 2; i >= 0; i-- {
work[i] = work[i]/d[i] + work[i+1]*math.Abs(e[i])
}
// Compute ainvnm = max(x[i]), 0<=i<n.
bi := blas64.Implementation()
ix := bi.Idamax(n, work, 1)
ainvnm := math.Abs(work[ix])
if ainvnm == 0 {
return 0
}
// Compute the reciprocal condition number.
return 1 / ainvnm / anorm
}
|