1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
|
// Copyright ©2023 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
// Dpttrf computes the L*D*Lᵀ factorization of an n×n symmetric positive
// definite tridiagonal matrix A and returns whether the factorization was
// successful.
//
// On entry, d and e contain the n diagonal and (n-1) subdiagonal elements,
// respectively, of A.
//
// On return, d contains the n diagonal elements of the diagonal matrix D and e
// contains the (n-1) subdiagonal elements of the unit bidiagonal matrix L.
func (impl Implementation) Dpttrf(n int, d, e []float64) (ok bool) {
if n < 0 {
panic(nLT0)
}
if n == 0 {
return true
}
switch {
case len(d) < n:
panic(shortD)
case len(e) < n-1:
panic(shortE)
}
// Compute the L*D*Lᵀ (or Uᵀ*D*U) factorization of A.
i4 := (n - 1) % 4
for i := 0; i < i4; i++ {
if d[i] <= 0 {
return false
}
ei := e[i]
e[i] /= d[i]
d[i+1] -= e[i] * ei
}
for i := i4; i < n-4; i += 4 {
// Drop out of the loop if d[i] <= 0: the matrix is not positive
// definite.
if d[i] <= 0 {
return false
}
// Solve for e[i] and d[i+1].
ei := e[i]
e[i] /= d[i]
d[i+1] -= e[i] * ei
if d[i+1] <= 0 {
return false
}
// Solve for e[i+1] and d[i+2].
ei = e[i+1]
e[i+1] /= d[i+1]
d[i+2] -= e[i+1] * ei
if d[i+2] <= 0 {
return false
}
// Solve for e[i+2] and d[i+3].
ei = e[i+2]
e[i+2] /= d[i+2]
d[i+3] -= e[i+2] * ei
if d[i+3] <= 0 {
return false
}
// Solve for e[i+3] and d[i+4].
ei = e[i+3]
e[i+3] /= d[i+3]
d[i+4] -= e[i+3] * ei
}
// Check d[n-1] for positive definiteness.
return d[n-1] > 0
}
|