1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
|
// Copyright ©2023 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import "gonum.org/v1/gonum/blas/blas64"
// dptts2 solves a tridiagonal system of the form
//
// A * X = B
//
// using the L*D*Lᵀ factorization of A computed by Dpttrf. D is a diagonal
// matrix specified in d, L is a unit bidiagonal matrix whose subdiagonal is
// specified in e, and X and B are n×nrhs matrices.
func (impl Implementation) dptts2(n, nrhs int, d, e []float64, b []float64, ldb int) {
// Quick return if possible.
if n <= 1 {
if n == 1 {
bi := blas64.Implementation()
bi.Dscal(nrhs, 1/d[0], b, 1)
}
return
}
// Solve A * X = B using the factorization A = L*D*Lᵀ, overwriting each
// right hand side vector with its solution.
for j := 0; j < nrhs; j++ {
// Solve L * x = b.
for i := 1; i < n; i++ {
b[i*ldb+j] -= b[(i-1)*ldb+j] * e[i-1]
}
// Solve D * Lᵀ * x = b.
b[(n-1)*ldb+j] /= d[n-1]
for i := n - 2; i >= 0; i-- {
b[i*ldb+j] = b[i*ldb+j]/d[i] - b[(i+1)*ldb+j]*e[i]
}
}
}
|