1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack"
)
// Dsteqr computes the eigenvalues and optionally the eigenvectors of a symmetric
// tridiagonal matrix using the implicit QL or QR method. The eigenvectors of a
// full or band symmetric matrix can also be found if Dsytrd, Dsptrd, or Dsbtrd
// have been used to reduce this matrix to tridiagonal form.
//
// d, on entry, contains the diagonal elements of the tridiagonal matrix. On exit,
// d contains the eigenvalues in ascending order. d must have length n and
// Dsteqr will panic otherwise.
//
// e, on entry, contains the off-diagonal elements of the tridiagonal matrix on
// entry, and is overwritten during the call to Dsteqr. e must have length n-1 and
// Dsteqr will panic otherwise.
//
// z, on entry, contains the n×n orthogonal matrix used in the reduction to
// tridiagonal form if compz == lapack.EVOrig. On exit, if
// compz == lapack.EVOrig, z contains the orthonormal eigenvectors of the
// original symmetric matrix, and if compz == lapack.EVTridiag, z contains the
// orthonormal eigenvectors of the symmetric tridiagonal matrix. z is not used
// if compz == lapack.EVCompNone.
//
// work must have length at least max(1, 2*n-2) if the eigenvectors are computed,
// and Dsteqr will panic otherwise.
//
// Dsteqr is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dsteqr(compz lapack.EVComp, n int, d, e, z []float64, ldz int, work []float64) (ok bool) {
switch {
case compz != lapack.EVCompNone && compz != lapack.EVTridiag && compz != lapack.EVOrig:
panic(badEVComp)
case n < 0:
panic(nLT0)
case ldz < 1, compz != lapack.EVCompNone && ldz < n:
panic(badLdZ)
}
// Quick return if possible.
if n == 0 {
return true
}
switch {
case len(d) < n:
panic(shortD)
case len(e) < n-1:
panic(shortE)
case compz != lapack.EVCompNone && len(z) < (n-1)*ldz+n:
panic(shortZ)
case compz != lapack.EVCompNone && len(work) < max(1, 2*n-2):
panic(shortWork)
}
var icompz int
if compz == lapack.EVOrig {
icompz = 1
} else if compz == lapack.EVTridiag {
icompz = 2
}
if n == 1 {
if icompz == 2 {
z[0] = 1
}
return true
}
bi := blas64.Implementation()
eps := dlamchE
eps2 := eps * eps
safmin := dlamchS
safmax := 1 / safmin
ssfmax := math.Sqrt(safmax) / 3
ssfmin := math.Sqrt(safmin) / eps2
// Compute the eigenvalues and eigenvectors of the tridiagonal matrix.
if icompz == 2 {
impl.Dlaset(blas.All, n, n, 0, 1, z, ldz)
}
const maxit = 30
nmaxit := n * maxit
jtot := 0
// Determine where the matrix splits and choose QL or QR iteration for each
// block, according to whether top or bottom diagonal element is smaller.
l1 := 0
nm1 := n - 1
type scaletype int
const (
down scaletype = iota + 1
up
)
var iscale scaletype
for {
if l1 > n-1 {
// Order eigenvalues and eigenvectors.
if icompz == 0 {
impl.Dlasrt(lapack.SortIncreasing, n, d)
} else {
// TODO(btracey): Consider replacing this sort with a call to sort.Sort.
for ii := 1; ii < n; ii++ {
i := ii - 1
k := i
p := d[i]
for j := ii; j < n; j++ {
if d[j] < p {
k = j
p = d[j]
}
}
if k != i {
d[k] = d[i]
d[i] = p
bi.Dswap(n, z[i:], ldz, z[k:], ldz)
}
}
}
return true
}
if l1 > 0 {
e[l1-1] = 0
}
var m int
if l1 <= nm1 {
for m = l1; m < nm1; m++ {
test := math.Abs(e[m])
if test == 0 {
break
}
if test <= (math.Sqrt(math.Abs(d[m]))*math.Sqrt(math.Abs(d[m+1])))*eps {
e[m] = 0
break
}
}
}
l := l1
lsv := l
lend := m
lendsv := lend
l1 = m + 1
if lend == l {
continue
}
// Scale submatrix in rows and columns L to Lend
anorm := impl.Dlanst(lapack.MaxAbs, lend-l+1, d[l:], e[l:])
switch {
case anorm == 0:
continue
case anorm > ssfmax:
iscale = down
// Pretend that d and e are matrices with 1 column.
impl.Dlascl(lapack.General, 0, 0, anorm, ssfmax, lend-l+1, 1, d[l:], 1)
impl.Dlascl(lapack.General, 0, 0, anorm, ssfmax, lend-l, 1, e[l:], 1)
case anorm < ssfmin:
iscale = up
impl.Dlascl(lapack.General, 0, 0, anorm, ssfmin, lend-l+1, 1, d[l:], 1)
impl.Dlascl(lapack.General, 0, 0, anorm, ssfmin, lend-l, 1, e[l:], 1)
}
// Choose between QL and QR.
if math.Abs(d[lend]) < math.Abs(d[l]) {
lend = lsv
l = lendsv
}
if lend > l {
// QL Iteration. Look for small subdiagonal element.
for {
if l != lend {
for m = l; m < lend; m++ {
v := math.Abs(e[m])
if v*v <= (eps2*math.Abs(d[m]))*math.Abs(d[m+1])+safmin {
break
}
}
} else {
m = lend
}
if m < lend {
e[m] = 0
}
p := d[l]
if m == l {
// Eigenvalue found.
l++
if l > lend {
break
}
continue
}
// If remaining matrix is 2×2, use Dlae2 to compute its eigensystem.
if m == l+1 {
if icompz > 0 {
d[l], d[l+1], work[l], work[n-1+l] = impl.Dlaev2(d[l], e[l], d[l+1])
impl.Dlasr(blas.Right, lapack.Variable, lapack.Backward,
n, 2, work[l:], work[n-1+l:], z[l:], ldz)
} else {
d[l], d[l+1] = impl.Dlae2(d[l], e[l], d[l+1])
}
e[l] = 0
l += 2
if l > lend {
break
}
continue
}
if jtot == nmaxit {
break
}
jtot++
// Form shift
g := (d[l+1] - p) / (2 * e[l])
r := impl.Dlapy2(g, 1)
g = d[m] - p + e[l]/(g+math.Copysign(r, g))
s := 1.0
c := 1.0
p = 0.0
// Inner loop
for i := m - 1; i >= l; i-- {
f := s * e[i]
b := c * e[i]
c, s, r = impl.Dlartg(g, f)
if i != m-1 {
e[i+1] = r
}
g = d[i+1] - p
r = (d[i]-g)*s + 2*c*b
p = s * r
d[i+1] = g + p
g = c*r - b
// If eigenvectors are desired, then save rotations.
if icompz > 0 {
work[i] = c
work[n-1+i] = -s
}
}
// If eigenvectors are desired, then apply saved rotations.
if icompz > 0 {
mm := m - l + 1
impl.Dlasr(blas.Right, lapack.Variable, lapack.Backward,
n, mm, work[l:], work[n-1+l:], z[l:], ldz)
}
d[l] -= p
e[l] = g
}
} else {
// QR Iteration.
// Look for small superdiagonal element.
for {
if l != lend {
for m = l; m > lend; m-- {
v := math.Abs(e[m-1])
if v*v <= (eps2*math.Abs(d[m])*math.Abs(d[m-1]) + safmin) {
break
}
}
} else {
m = lend
}
if m > lend {
e[m-1] = 0
}
p := d[l]
if m == l {
// Eigenvalue found
l--
if l < lend {
break
}
continue
}
// If remaining matrix is 2×2, use Dlae2 to compute its eigenvalues.
if m == l-1 {
if icompz > 0 {
d[l-1], d[l], work[m], work[n-1+m] = impl.Dlaev2(d[l-1], e[l-1], d[l])
impl.Dlasr(blas.Right, lapack.Variable, lapack.Forward,
n, 2, work[m:], work[n-1+m:], z[l-1:], ldz)
} else {
d[l-1], d[l] = impl.Dlae2(d[l-1], e[l-1], d[l])
}
e[l-1] = 0
l -= 2
if l < lend {
break
}
continue
}
if jtot == nmaxit {
break
}
jtot++
// Form shift.
g := (d[l-1] - p) / (2 * e[l-1])
r := impl.Dlapy2(g, 1)
g = d[m] - p + (e[l-1])/(g+math.Copysign(r, g))
s := 1.0
c := 1.0
p = 0.0
// Inner loop.
for i := m; i < l; i++ {
f := s * e[i]
b := c * e[i]
c, s, r = impl.Dlartg(g, f)
if i != m {
e[i-1] = r
}
g = d[i] - p
r = (d[i+1]-g)*s + 2*c*b
p = s * r
d[i] = g + p
g = c*r - b
// If eigenvectors are desired, then save rotations.
if icompz > 0 {
work[i] = c
work[n-1+i] = s
}
}
// If eigenvectors are desired, then apply saved rotations.
if icompz > 0 {
mm := l - m + 1
impl.Dlasr(blas.Right, lapack.Variable, lapack.Forward,
n, mm, work[m:], work[n-1+m:], z[m:], ldz)
}
d[l] -= p
e[l-1] = g
}
}
// Undo scaling if necessary.
switch iscale {
case down:
// Pretend that d and e are matrices with 1 column.
impl.Dlascl(lapack.General, 0, 0, ssfmax, anorm, lendsv-lsv+1, 1, d[lsv:], 1)
impl.Dlascl(lapack.General, 0, 0, ssfmax, anorm, lendsv-lsv, 1, e[lsv:], 1)
case up:
impl.Dlascl(lapack.General, 0, 0, ssfmin, anorm, lendsv-lsv+1, 1, d[lsv:], 1)
impl.Dlascl(lapack.General, 0, 0, ssfmin, anorm, lendsv-lsv, 1, e[lsv:], 1)
}
// Check for no convergence to an eigenvalue after a total of n*maxit iterations.
if jtot >= nmaxit {
break
}
}
for i := 0; i < n-1; i++ {
if e[i] != 0 {
return false
}
}
return true
}
|