1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack"
)
// Dsyev computes all eigenvalues and, optionally, the eigenvectors of a real
// symmetric matrix A.
//
// w contains the eigenvalues in ascending order upon return. w must have length
// at least n, and Dsyev will panic otherwise.
//
// On entry, a contains the elements of the symmetric matrix A in the triangular
// portion specified by uplo. If jobz == lapack.EVCompute, a contains the
// orthonormal eigenvectors of A on exit, otherwise jobz must be lapack.EVNone
// and on exit the specified triangular region is overwritten.
//
// work is temporary storage, and lwork specifies the usable memory length. At minimum,
// lwork >= 3*n-1, and Dsyev will panic otherwise. The amount of blocking is
// limited by the usable length. If lwork == -1, instead of computing Dsyev the
// optimal work length is stored into work[0].
func (impl Implementation) Dsyev(jobz lapack.EVJob, uplo blas.Uplo, n int, a []float64, lda int, w, work []float64, lwork int) (ok bool) {
switch {
case jobz != lapack.EVNone && jobz != lapack.EVCompute:
panic(badEVJob)
case uplo != blas.Upper && uplo != blas.Lower:
panic(badUplo)
case n < 0:
panic(nLT0)
case lda < max(1, n):
panic(badLdA)
case lwork < max(1, 3*n-1) && lwork != -1:
panic(badLWork)
case len(work) < max(1, lwork):
panic(shortWork)
}
// Quick return if possible.
if n == 0 {
return true
}
var opts string
if uplo == blas.Upper {
opts = "U"
} else {
opts = "L"
}
nb := impl.Ilaenv(1, "DSYTRD", opts, n, -1, -1, -1)
lworkopt := max(1, (nb+2)*n)
if lwork == -1 {
work[0] = float64(lworkopt)
return
}
switch {
case len(a) < (n-1)*lda+n:
panic(shortA)
case len(w) < n:
panic(shortW)
}
if n == 1 {
w[0] = a[0]
work[0] = 2
if jobz == lapack.EVCompute {
a[0] = 1
}
return true
}
safmin := dlamchS
eps := dlamchP
smlnum := safmin / eps
bignum := 1 / smlnum
rmin := math.Sqrt(smlnum)
rmax := math.Sqrt(bignum)
// Scale matrix to allowable range, if necessary.
anrm := impl.Dlansy(lapack.MaxAbs, uplo, n, a, lda, work)
scaled := false
var sigma float64
if anrm > 0 && anrm < rmin {
scaled = true
sigma = rmin / anrm
} else if anrm > rmax {
scaled = true
sigma = rmax / anrm
}
if scaled {
kind := lapack.LowerTri
if uplo == blas.Upper {
kind = lapack.UpperTri
}
impl.Dlascl(kind, 0, 0, 1, sigma, n, n, a, lda)
}
var inde int
indtau := inde + n
indwork := indtau + n
llwork := lwork - indwork
impl.Dsytrd(uplo, n, a, lda, w, work[inde:], work[indtau:], work[indwork:], llwork)
// For eigenvalues only, call Dsterf. For eigenvectors, first call Dorgtr
// to generate the orthogonal matrix, then call Dsteqr.
if jobz == lapack.EVNone {
ok = impl.Dsterf(n, w, work[inde:])
} else {
impl.Dorgtr(uplo, n, a, lda, work[indtau:], work[indwork:], llwork)
ok = impl.Dsteqr(lapack.EVComp(jobz), n, w, work[inde:], a, lda, work[indtau:])
}
if !ok {
return false
}
// If the matrix was scaled, then rescale eigenvalues appropriately.
if scaled {
bi := blas64.Implementation()
bi.Dscal(n, 1/sigma, w, 1)
}
work[0] = float64(lworkopt)
return true
}
|