1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
)
// Dsytd2 reduces a symmetric n×n matrix A to symmetric tridiagonal form T by
// an orthogonal similarity transformation
//
// Qᵀ * A * Q = T
//
// On entry, the matrix is contained in the specified triangle of a. On exit,
// if uplo == blas.Upper, the diagonal and first super-diagonal of a are
// overwritten with the elements of T. The elements above the first super-diagonal
// are overwritten with the elementary reflectors that are used with
// the elements written to tau in order to construct Q. If uplo == blas.Lower,
// the elements are written in the lower triangular region.
//
// d must have length at least n. e and tau must have length at least n-1. Dsytd2
// will panic if these sizes are not met.
//
// Q is represented as a product of elementary reflectors.
// If uplo == blas.Upper
//
// Q = H_{n-2} * ... * H_1 * H_0
//
// and if uplo == blas.Lower
//
// Q = H_0 * H_1 * ... * H_{n-2}
//
// where
//
// H_i = I - tau * v * vᵀ
//
// where tau is stored in tau[i], and v is stored in a.
//
// If uplo == blas.Upper, v[0:i-1] is stored in A[0:i-1,i+1], v[i] = 1, and
// v[i+1:] = 0. The elements of a are
//
// [ d e v2 v3 v4]
// [ d e v3 v4]
// [ d e v4]
// [ d e]
// [ d]
//
// If uplo == blas.Lower, v[0:i+1] = 0, v[i+1] = 1, and v[i+2:] is stored in
// A[i+2:n,i].
// The elements of a are
//
// [ d ]
// [ e d ]
// [v1 e d ]
// [v1 v2 e d ]
// [v1 v2 v3 e d]
//
// Dsytd2 is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dsytd2(uplo blas.Uplo, n int, a []float64, lda int, d, e, tau []float64) {
switch {
case uplo != blas.Upper && uplo != blas.Lower:
panic(badUplo)
case n < 0:
panic(nLT0)
case lda < max(1, n):
panic(badLdA)
}
// Quick return if possible.
if n == 0 {
return
}
switch {
case len(a) < (n-1)*lda+n:
panic(shortA)
case len(d) < n:
panic(shortD)
case len(e) < n-1:
panic(shortE)
case len(tau) < n-1:
panic(shortTau)
}
bi := blas64.Implementation()
if uplo == blas.Upper {
// Reduce the upper triangle of A.
for i := n - 2; i >= 0; i-- {
// Generate elementary reflector H_i = I - tau * v * vᵀ to
// annihilate A[i:i-1, i+1].
var taui float64
a[i*lda+i+1], taui = impl.Dlarfg(i+1, a[i*lda+i+1], a[i+1:], lda)
e[i] = a[i*lda+i+1]
if taui != 0 {
// Apply H_i from both sides to A[0:i,0:i].
a[i*lda+i+1] = 1
// Compute x := tau * A * v storing x in tau[0:i].
bi.Dsymv(uplo, i+1, taui, a, lda, a[i+1:], lda, 0, tau, 1)
// Compute w := x - 1/2 * tau * (xᵀ * v) * v.
alpha := -0.5 * taui * bi.Ddot(i+1, tau, 1, a[i+1:], lda)
bi.Daxpy(i+1, alpha, a[i+1:], lda, tau, 1)
// Apply the transformation as a rank-2 update
// A = A - v * wᵀ - w * vᵀ.
bi.Dsyr2(uplo, i+1, -1, a[i+1:], lda, tau, 1, a, lda)
a[i*lda+i+1] = e[i]
}
d[i+1] = a[(i+1)*lda+i+1]
tau[i] = taui
}
d[0] = a[0]
return
}
// Reduce the lower triangle of A.
for i := 0; i < n-1; i++ {
// Generate elementary reflector H_i = I - tau * v * vᵀ to
// annihilate A[i+2:n, i].
var taui float64
a[(i+1)*lda+i], taui = impl.Dlarfg(n-i-1, a[(i+1)*lda+i], a[min(i+2, n-1)*lda+i:], lda)
e[i] = a[(i+1)*lda+i]
if taui != 0 {
// Apply H_i from both sides to A[i+1:n, i+1:n].
a[(i+1)*lda+i] = 1
// Compute x := tau * A * v, storing y in tau[i:n-1].
bi.Dsymv(uplo, n-i-1, taui, a[(i+1)*lda+i+1:], lda, a[(i+1)*lda+i:], lda, 0, tau[i:], 1)
// Compute w := x - 1/2 * tau * (xᵀ * v) * v.
alpha := -0.5 * taui * bi.Ddot(n-i-1, tau[i:], 1, a[(i+1)*lda+i:], lda)
bi.Daxpy(n-i-1, alpha, a[(i+1)*lda+i:], lda, tau[i:], 1)
// Apply the transformation as a rank-2 update
// A = A - v * wᵀ - w * vᵀ.
bi.Dsyr2(uplo, n-i-1, -1, a[(i+1)*lda+i:], lda, tau[i:], 1, a[(i+1)*lda+i+1:], lda)
a[(i+1)*lda+i] = e[i]
}
d[i] = a[i*lda+i]
tau[i] = taui
}
d[n-1] = a[(n-1)*lda+n-1]
}
|