1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
)
// Dsytrd reduces a symmetric n×n matrix A to symmetric tridiagonal form by an
// orthogonal similarity transformation
//
// Qᵀ * A * Q = T
//
// where Q is an orthonormal matrix and T is symmetric and tridiagonal.
//
// On entry, a contains the elements of the input matrix in the triangle specified
// by uplo. On exit, the diagonal and sub/super-diagonal are overwritten by the
// corresponding elements of the tridiagonal matrix T. The remaining elements in
// the triangle, along with the array tau, contain the data to construct Q as
// the product of elementary reflectors.
//
// If uplo == blas.Upper, Q is constructed with
//
// Q = H_{n-2} * ... * H_1 * H_0
//
// where
//
// H_i = I - tau_i * v * vᵀ
//
// v is constructed as v[i+1:n] = 0, v[i] = 1, v[0:i-1] is stored in A[0:i-1, i+1].
// The elements of A are
//
// [ d e v1 v2 v3]
// [ d e v2 v3]
// [ d e v3]
// [ d e]
// [ e]
//
// If uplo == blas.Lower, Q is constructed with
//
// Q = H_0 * H_1 * ... * H_{n-2}
//
// where
//
// H_i = I - tau_i * v * vᵀ
//
// v is constructed as v[0:i+1] = 0, v[i+1] = 1, v[i+2:n] is stored in A[i+2:n, i].
// The elements of A are
//
// [ d ]
// [ e d ]
// [v0 e d ]
// [v0 v1 e d ]
// [v0 v1 v2 e d]
//
// d must have length n, and e and tau must have length n-1. Dsytrd will panic if
// these conditions are not met.
//
// work is temporary storage, and lwork specifies the usable memory length. At minimum,
// lwork >= 1, and Dsytrd will panic otherwise. The amount of blocking is
// limited by the usable length.
// If lwork == -1, instead of computing Dsytrd the optimal work length is stored
// into work[0].
//
// Dsytrd is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dsytrd(uplo blas.Uplo, n int, a []float64, lda int, d, e, tau, work []float64, lwork int) {
switch {
case uplo != blas.Upper && uplo != blas.Lower:
panic(badUplo)
case n < 0:
panic(nLT0)
case lda < max(1, n):
panic(badLdA)
case lwork < 1 && lwork != -1:
panic(badLWork)
case len(work) < max(1, lwork):
panic(shortWork)
}
// Quick return if possible.
if n == 0 {
work[0] = 1
return
}
nb := impl.Ilaenv(1, "DSYTRD", string(uplo), n, -1, -1, -1)
lworkopt := n * nb
if lwork == -1 {
work[0] = float64(lworkopt)
return
}
switch {
case len(a) < (n-1)*lda+n:
panic(shortA)
case len(d) < n:
panic(shortD)
case len(e) < n-1:
panic(shortE)
case len(tau) < n-1:
panic(shortTau)
}
bi := blas64.Implementation()
nx := n
iws := 1
var ldwork int
if 1 < nb && nb < n {
// Determine when to cross over from blocked to unblocked code. The last
// block is always handled by unblocked code.
nx = max(nb, impl.Ilaenv(3, "DSYTRD", string(uplo), n, -1, -1, -1))
if nx < n {
// Determine if workspace is large enough for blocked code.
ldwork = nb
iws = n * ldwork
if lwork < iws {
// Not enough workspace to use optimal nb: determine the minimum
// value of nb and reduce nb or force use of unblocked code by
// setting nx = n.
nb = max(lwork/n, 1)
nbmin := impl.Ilaenv(2, "DSYTRD", string(uplo), n, -1, -1, -1)
if nb < nbmin {
nx = n
}
}
} else {
nx = n
}
} else {
nb = 1
}
ldwork = nb
if uplo == blas.Upper {
// Reduce the upper triangle of A. Columns 0:kk are handled by the
// unblocked method.
var i int
kk := n - ((n-nx+nb-1)/nb)*nb
for i = n - nb; i >= kk; i -= nb {
// Reduce columns i:i+nb to tridiagonal form and form the matrix W
// which is needed to update the unreduced part of the matrix.
impl.Dlatrd(uplo, i+nb, nb, a, lda, e, tau, work, ldwork)
// Update the unreduced submatrix A[0:i-1,0:i-1], using an update
// of the form A = A - V*Wᵀ - W*Vᵀ.
bi.Dsyr2k(uplo, blas.NoTrans, i, nb, -1, a[i:], lda, work, ldwork, 1, a, lda)
// Copy superdiagonal elements back into A, and diagonal elements into D.
for j := i; j < i+nb; j++ {
a[(j-1)*lda+j] = e[j-1]
d[j] = a[j*lda+j]
}
}
// Use unblocked code to reduce the last or only block
// check that i == kk.
impl.Dsytd2(uplo, kk, a, lda, d, e, tau)
} else {
var i int
// Reduce the lower triangle of A.
for i = 0; i < n-nx; i += nb {
// Reduce columns 0:i+nb to tridiagonal form and form the matrix W
// which is needed to update the unreduced part of the matrix.
impl.Dlatrd(uplo, n-i, nb, a[i*lda+i:], lda, e[i:], tau[i:], work, ldwork)
// Update the unreduced submatrix A[i+ib:n, i+ib:n], using an update
// of the form A = A + V*Wᵀ - W*Vᵀ.
bi.Dsyr2k(uplo, blas.NoTrans, n-i-nb, nb, -1, a[(i+nb)*lda+i:], lda,
work[nb*ldwork:], ldwork, 1, a[(i+nb)*lda+i+nb:], lda)
// Copy subdiagonal elements back into A, and diagonal elements into D.
for j := i; j < i+nb; j++ {
a[(j+1)*lda+j] = e[j]
d[j] = a[j*lda+j]
}
}
// Use unblocked code to reduce the last or only block.
impl.Dsytd2(uplo, n-i, a[i*lda+i:], lda, d[i:], e[i:], tau[i:])
}
work[0] = float64(iws)
}
|