1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack"
)
// Dtgsja computes the generalized singular value decomposition (GSVD)
// of two real upper triangular or trapezoidal matrices A and B.
//
// A and B have the following forms, which may be obtained by the
// preprocessing subroutine Dggsvp from a general m×n matrix A and p×n
// matrix B:
//
// n-k-l k l
// A = k [ 0 A12 A13 ] if m-k-l >= 0;
// l [ 0 0 A23 ]
// m-k-l [ 0 0 0 ]
//
// n-k-l k l
// A = k [ 0 A12 A13 ] if m-k-l < 0;
// m-k [ 0 0 A23 ]
//
// n-k-l k l
// B = l [ 0 0 B13 ]
// p-l [ 0 0 0 ]
//
// where the k×k matrix A12 and l×l matrix B13 are non-singular
// upper triangular. A23 is l×l upper triangular if m-k-l >= 0,
// otherwise A23 is (m-k)×l upper trapezoidal.
//
// On exit,
//
// Uᵀ*A*Q = D1*[ 0 R ], Vᵀ*B*Q = D2*[ 0 R ],
//
// where U, V and Q are orthogonal matrices.
// R is a non-singular upper triangular matrix, and D1 and D2 are
// diagonal matrices, which are of the following structures:
//
// If m-k-l >= 0,
//
// k l
// D1 = k [ I 0 ]
// l [ 0 C ]
// m-k-l [ 0 0 ]
//
// k l
// D2 = l [ 0 S ]
// p-l [ 0 0 ]
//
// n-k-l k l
// [ 0 R ] = k [ 0 R11 R12 ] k
// l [ 0 0 R22 ] l
//
// where
//
// C = diag( alpha_k, ... , alpha_{k+l} ),
// S = diag( beta_k, ... , beta_{k+l} ),
// C^2 + S^2 = I.
//
// R is stored in
//
// A[0:k+l, n-k-l:n]
//
// on exit.
//
// If m-k-l < 0,
//
// k m-k k+l-m
// D1 = k [ I 0 0 ]
// m-k [ 0 C 0 ]
//
// k m-k k+l-m
// D2 = m-k [ 0 S 0 ]
// k+l-m [ 0 0 I ]
// p-l [ 0 0 0 ]
//
// n-k-l k m-k k+l-m
// [ 0 R ] = k [ 0 R11 R12 R13 ]
// m-k [ 0 0 R22 R23 ]
// k+l-m [ 0 0 0 R33 ]
//
// where
//
// C = diag( alpha_k, ... , alpha_m ),
// S = diag( beta_k, ... , beta_m ),
// C^2 + S^2 = I.
//
// R = [ R11 R12 R13 ] is stored in A[0:m, n-k-l:n]
// [ 0 R22 R23 ]
//
// and R33 is stored in
//
// B[m-k:l, n+m-k-l:n] on exit.
//
// The computation of the orthogonal transformation matrices U, V or Q
// is optional. These matrices may either be formed explicitly, or they
// may be post-multiplied into input matrices U1, V1, or Q1.
//
// Dtgsja essentially uses a variant of Kogbetliantz algorithm to reduce
// min(l,m-k)×l triangular or trapezoidal matrix A23 and l×l
// matrix B13 to the form:
//
// U1ᵀ*A13*Q1 = C1*R1; V1ᵀ*B13*Q1 = S1*R1,
//
// where U1, V1 and Q1 are orthogonal matrices. C1 and S1 are diagonal
// matrices satisfying
//
// C1^2 + S1^2 = I,
//
// and R1 is an l×l non-singular upper triangular matrix.
//
// jobU, jobV and jobQ are options for computing the orthogonal matrices. The behavior
// is as follows
//
// jobU == lapack.GSVDU Compute orthogonal matrix U
// jobU == lapack.GSVDUnit Use unit-initialized matrix
// jobU == lapack.GSVDNone Do not compute orthogonal matrix.
//
// The behavior is the same for jobV and jobQ with the exception that instead of
// lapack.GSVDU these accept lapack.GSVDV and lapack.GSVDQ respectively.
// The matrices U, V and Q must be m×m, p×p and n×n respectively unless the
// relevant job parameter is lapack.GSVDNone.
//
// k and l specify the sub-blocks in the input matrices A and B:
//
// A23 = A[k:min(k+l,m), n-l:n) and B13 = B[0:l, n-l:n]
//
// of A and B, whose GSVD is going to be computed by Dtgsja.
//
// tola and tolb are the convergence criteria for the Jacobi-Kogbetliantz
// iteration procedure. Generally, they are the same as used in the preprocessing
// step, for example,
//
// tola = max(m, n)*norm(A)*eps,
// tolb = max(p, n)*norm(B)*eps,
//
// where eps is the machine epsilon.
//
// work must have length at least 2*n, otherwise Dtgsja will panic.
//
// alpha and beta must have length n or Dtgsja will panic. On exit, alpha and
// beta contain the generalized singular value pairs of A and B
//
// alpha[0:k] = 1,
// beta[0:k] = 0,
//
// if m-k-l >= 0,
//
// alpha[k:k+l] = diag(C),
// beta[k:k+l] = diag(S),
//
// if m-k-l < 0,
//
// alpha[k:m]= C, alpha[m:k+l]= 0
// beta[k:m] = S, beta[m:k+l] = 1.
//
// if k+l < n,
//
// alpha[k+l:n] = 0 and
// beta[k+l:n] = 0.
//
// On exit, A[n-k:n, 0:min(k+l,m)] contains the triangular matrix R or part of R
// and if necessary, B[m-k:l, n+m-k-l:n] contains a part of R.
//
// Dtgsja returns whether the routine converged and the number of iteration cycles
// that were run.
//
// Dtgsja is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dtgsja(jobU, jobV, jobQ lapack.GSVDJob, m, p, n, k, l int, a []float64, lda int, b []float64, ldb int, tola, tolb float64, alpha, beta, u []float64, ldu int, v []float64, ldv int, q []float64, ldq int, work []float64) (cycles int, ok bool) {
const maxit = 40
initu := jobU == lapack.GSVDUnit
wantu := initu || jobU == lapack.GSVDU
initv := jobV == lapack.GSVDUnit
wantv := initv || jobV == lapack.GSVDV
initq := jobQ == lapack.GSVDUnit
wantq := initq || jobQ == lapack.GSVDQ
switch {
case !initu && !wantu && jobU != lapack.GSVDNone:
panic(badGSVDJob + "U")
case !initv && !wantv && jobV != lapack.GSVDNone:
panic(badGSVDJob + "V")
case !initq && !wantq && jobQ != lapack.GSVDNone:
panic(badGSVDJob + "Q")
case m < 0:
panic(mLT0)
case p < 0:
panic(pLT0)
case n < 0:
panic(nLT0)
case lda < max(1, n):
panic(badLdA)
case len(a) < (m-1)*lda+n:
panic(shortA)
case ldb < max(1, n):
panic(badLdB)
case len(b) < (p-1)*ldb+n:
panic(shortB)
case len(alpha) != n:
panic(badLenAlpha)
case len(beta) != n:
panic(badLenBeta)
case ldu < 1, wantu && ldu < m:
panic(badLdU)
case wantu && len(u) < (m-1)*ldu+m:
panic(shortU)
case ldv < 1, wantv && ldv < p:
panic(badLdV)
case wantv && len(v) < (p-1)*ldv+p:
panic(shortV)
case ldq < 1, wantq && ldq < n:
panic(badLdQ)
case wantq && len(q) < (n-1)*ldq+n:
panic(shortQ)
case len(work) < 2*n:
panic(shortWork)
}
// Initialize U, V and Q, if necessary
if initu {
impl.Dlaset(blas.All, m, m, 0, 1, u, ldu)
}
if initv {
impl.Dlaset(blas.All, p, p, 0, 1, v, ldv)
}
if initq {
impl.Dlaset(blas.All, n, n, 0, 1, q, ldq)
}
bi := blas64.Implementation()
minTol := math.Min(tola, tolb)
// Loop until convergence.
upper := false
for cycles = 1; cycles <= maxit; cycles++ {
upper = !upper
for i := 0; i < l-1; i++ {
for j := i + 1; j < l; j++ {
var a1, a2, a3 float64
if k+i < m {
a1 = a[(k+i)*lda+n-l+i]
}
if k+j < m {
a3 = a[(k+j)*lda+n-l+j]
}
b1 := b[i*ldb+n-l+i]
b3 := b[j*ldb+n-l+j]
var b2 float64
if upper {
if k+i < m {
a2 = a[(k+i)*lda+n-l+j]
}
b2 = b[i*ldb+n-l+j]
} else {
if k+j < m {
a2 = a[(k+j)*lda+n-l+i]
}
b2 = b[j*ldb+n-l+i]
}
csu, snu, csv, snv, csq, snq := impl.Dlags2(upper, a1, a2, a3, b1, b2, b3)
// Update (k+i)-th and (k+j)-th rows of matrix A: Uᵀ*A.
if k+j < m {
bi.Drot(l, a[(k+j)*lda+n-l:], 1, a[(k+i)*lda+n-l:], 1, csu, snu)
}
// Update i-th and j-th rows of matrix B: Vᵀ*B.
bi.Drot(l, b[j*ldb+n-l:], 1, b[i*ldb+n-l:], 1, csv, snv)
// Update (n-l+i)-th and (n-l+j)-th columns of matrices
// A and B: A*Q and B*Q.
bi.Drot(min(k+l, m), a[n-l+j:], lda, a[n-l+i:], lda, csq, snq)
bi.Drot(l, b[n-l+j:], ldb, b[n-l+i:], ldb, csq, snq)
if upper {
if k+i < m {
a[(k+i)*lda+n-l+j] = 0
}
b[i*ldb+n-l+j] = 0
} else {
if k+j < m {
a[(k+j)*lda+n-l+i] = 0
}
b[j*ldb+n-l+i] = 0
}
// Update orthogonal matrices U, V, Q, if desired.
if wantu && k+j < m {
bi.Drot(m, u[k+j:], ldu, u[k+i:], ldu, csu, snu)
}
if wantv {
bi.Drot(p, v[j:], ldv, v[i:], ldv, csv, snv)
}
if wantq {
bi.Drot(n, q[n-l+j:], ldq, q[n-l+i:], ldq, csq, snq)
}
}
}
if !upper {
// The matrices A13 and B13 were lower triangular at the start
// of the cycle, and are now upper triangular.
//
// Convergence test: test the parallelism of the corresponding
// rows of A and B.
var error float64
for i := 0; i < min(l, m-k); i++ {
bi.Dcopy(l-i, a[(k+i)*lda+n-l+i:], 1, work, 1)
bi.Dcopy(l-i, b[i*ldb+n-l+i:], 1, work[l:], 1)
ssmin := impl.Dlapll(l-i, work, 1, work[l:], 1)
error = math.Max(error, ssmin)
}
if math.Abs(error) <= minTol {
// The algorithm has converged.
// Compute the generalized singular value pairs (alpha, beta)
// and set the triangular matrix R to array A.
for i := 0; i < k; i++ {
alpha[i] = 1
beta[i] = 0
}
for i := 0; i < min(l, m-k); i++ {
a1 := a[(k+i)*lda+n-l+i]
b1 := b[i*ldb+n-l+i]
gamma := b1 / a1
if !math.IsInf(gamma, 0) {
// Change sign if necessary.
if gamma < 0 {
bi.Dscal(l-i, -1, b[i*ldb+n-l+i:], 1)
if wantv {
bi.Dscal(p, -1, v[i:], ldv)
}
}
beta[k+i], alpha[k+i], _ = impl.Dlartg(math.Abs(gamma), 1)
if alpha[k+i] >= beta[k+i] {
bi.Dscal(l-i, 1/alpha[k+i], a[(k+i)*lda+n-l+i:], 1)
} else {
bi.Dscal(l-i, 1/beta[k+i], b[i*ldb+n-l+i:], 1)
bi.Dcopy(l-i, b[i*ldb+n-l+i:], 1, a[(k+i)*lda+n-l+i:], 1)
}
} else {
alpha[k+i] = 0
beta[k+i] = 1
bi.Dcopy(l-i, b[i*ldb+n-l+i:], 1, a[(k+i)*lda+n-l+i:], 1)
}
}
for i := m; i < k+l; i++ {
alpha[i] = 0
beta[i] = 1
}
if k+l < n {
for i := k + l; i < n; i++ {
alpha[i] = 0
beta[i] = 0
}
}
return cycles, true
}
}
}
// The algorithm has not converged after maxit cycles.
return cycles, false
}
|