File: dtrti2.go

package info (click to toggle)
golang-gonum-v1-gonum 0.15.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,792 kB
  • sloc: asm: 6,252; fortran: 5,271; sh: 377; ruby: 211; makefile: 98
file content (69 lines) | stat: -rw-r--r-- 1,584 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package gonum

import (
	"gonum.org/v1/gonum/blas"
	"gonum.org/v1/gonum/blas/blas64"
)

// Dtrti2 computes the inverse of a triangular matrix, storing the result in place
// into a. This is the BLAS level 2 version of the algorithm.
//
// Dtrti2 is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dtrti2(uplo blas.Uplo, diag blas.Diag, n int, a []float64, lda int) {
	switch {
	case uplo != blas.Upper && uplo != blas.Lower:
		panic(badUplo)
	case diag != blas.NonUnit && diag != blas.Unit:
		panic(badDiag)
	case n < 0:
		panic(nLT0)
	case lda < max(1, n):
		panic(badLdA)
	}

	if n == 0 {
		return
	}

	if len(a) < (n-1)*lda+n {
		panic(shortA)
	}

	bi := blas64.Implementation()

	nonUnit := diag == blas.NonUnit
	// TODO(btracey): Replace this with a row-major ordering.
	if uplo == blas.Upper {
		for j := 0; j < n; j++ {
			var ajj float64
			if nonUnit {
				ajj = 1 / a[j*lda+j]
				a[j*lda+j] = ajj
				ajj *= -1
			} else {
				ajj = -1
			}
			bi.Dtrmv(blas.Upper, blas.NoTrans, diag, j, a, lda, a[j:], lda)
			bi.Dscal(j, ajj, a[j:], lda)
		}
		return
	}
	for j := n - 1; j >= 0; j-- {
		var ajj float64
		if nonUnit {
			ajj = 1 / a[j*lda+j]
			a[j*lda+j] = ajj
			ajj *= -1
		} else {
			ajj = -1
		}
		if j < n-1 {
			bi.Dtrmv(blas.Lower, blas.NoTrans, diag, n-j-1, a[(j+1)*lda+j+1:], lda, a[(j+1)*lda+j:], lda)
			bi.Dscal(n-j-1, ajj, a[(j+1)*lda+j:], lda)
		}
	}
}