1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testlapack
import (
"fmt"
"math"
"sort"
"testing"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/lapack"
)
type Dgesvder interface {
Dgesvd(jobU, jobVT lapack.SVDJob, m, n int, a []float64, lda int, s, u []float64, ldu int, vt []float64, ldvt int, work []float64, lwork int) (ok bool)
}
func DgesvdTest(t *testing.T, impl Dgesvder, tol float64) {
for _, m := range []int{0, 1, 2, 3, 4, 5, 10, 150, 300} {
for _, n := range []int{0, 1, 2, 3, 4, 5, 10, 150} {
for _, mtype := range []int{1, 2, 3, 4, 5} {
dgesvdTest(t, impl, m, n, mtype, tol)
}
}
}
}
// dgesvdTest tests a Dgesvd implementation on an m×n matrix A generated
// according to mtype as:
// - the zero matrix if mtype == 1,
// - the identity matrix if mtype == 2,
// - a random matrix with a given condition number and singular values if mtype == 3, 4, or 5.
//
// It first computes the full SVD A = U*Sigma*Vᵀ and checks that
// - U has orthonormal columns, and Vᵀ has orthonormal rows,
// - U*Sigma*Vᵀ multiply back to A,
// - the singular values are non-negative and sorted in decreasing order.
//
// Then all combinations of partial SVD results are computed and checked whether
// they match the full SVD result.
func dgesvdTest(t *testing.T, impl Dgesvder, m, n, mtype int, tol float64) {
const tolOrtho = 1e-15
rnd := rand.New(rand.NewSource(1))
// Use a fixed leading dimension to reduce testing time.
lda := n + 3
ldu := m + 5
ldvt := n + 7
minmn := min(m, n)
// Allocate A and fill it with random values. The in-range elements will
// be overwritten below according to mtype.
a := make([]float64, m*lda)
for i := range a {
a[i] = rnd.NormFloat64()
}
var aNorm float64
switch mtype {
default:
panic("unknown test matrix type")
case 1:
// Zero matrix.
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
a[i*lda+j] = 0
}
}
aNorm = 0
case 2:
// Identity matrix.
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
if i == j {
a[i*lda+i] = 1
} else {
a[i*lda+j] = 0
}
}
}
aNorm = 1
case 3, 4, 5:
// Scaled random matrix.
// Generate singular values.
s := make([]float64, minmn)
Dlatm1(s,
4, // s[i] = 1 - i*(1-1/cond)/(minmn-1)
float64(max(1, minmn)), // where cond = max(1,minmn)
false, // signs of s[i] are not randomly flipped
1, rnd) // random numbers are drawn uniformly from [0,1)
// Decide scale factor for the singular values based on the matrix type.
aNorm = 1
if mtype == 4 {
aNorm = smlnum
}
if mtype == 5 {
aNorm = bignum
}
// Scale singular values so that the maximum singular value is
// equal to aNorm (we know that the singular values are
// generated above to be spread linearly between 1/cond and 1).
floats.Scale(aNorm, s)
// Generate A by multiplying S by random orthogonal matrices
// from left and right.
Dlagge(m, n, max(0, m-1), max(0, n-1), s, a, lda, rnd, make([]float64, m+n))
}
aCopy := make([]float64, len(a))
copy(aCopy, a)
for _, wl := range []worklen{minimumWork, mediumWork, optimumWork} {
// Restore A because Dgesvd overwrites it.
copy(a, aCopy)
// Allocate slices that will be used below to store the results of full
// SVD and fill them.
uAll := make([]float64, m*ldu)
for i := range uAll {
uAll[i] = rnd.NormFloat64()
}
vtAll := make([]float64, n*ldvt)
for i := range vtAll {
vtAll[i] = rnd.NormFloat64()
}
sAll := make([]float64, min(m, n))
for i := range sAll {
sAll[i] = math.NaN()
}
prefix := fmt.Sprintf("m=%v,n=%v,work=%v,mtype=%v", m, n, wl, mtype)
// Determine workspace size based on wl.
minwork := max(1, max(5*min(m, n), 3*min(m, n)+max(m, n)))
var lwork int
switch wl {
case minimumWork:
lwork = minwork
case mediumWork:
work := make([]float64, 1)
impl.Dgesvd(lapack.SVDAll, lapack.SVDAll, m, n, a, lda, sAll, uAll, ldu, vtAll, ldvt, work, -1)
lwork = (int(work[0]) + minwork) / 2
case optimumWork:
work := make([]float64, 1)
impl.Dgesvd(lapack.SVDAll, lapack.SVDAll, m, n, a, lda, sAll, uAll, ldu, vtAll, ldvt, work, -1)
lwork = int(work[0])
}
work := make([]float64, max(1, lwork))
for i := range work {
work[i] = math.NaN()
}
// Compute the full SVD which will be used later for checking the partial results.
ok := impl.Dgesvd(lapack.SVDAll, lapack.SVDAll, m, n, a, lda, sAll, uAll, ldu, vtAll, ldvt, work, len(work))
if !ok {
t.Fatalf("Case %v: unexpected failure in full SVD", prefix)
}
// Check that uAll, sAll, and vtAll multiply back to A by computing a residual
// |A - U*S*VT| / (n*aNorm)
if resid := svdFullResidual(m, n, aNorm, aCopy, lda, uAll, ldu, sAll, vtAll, ldvt); resid > tol {
t.Errorf("Case %v: original matrix not recovered for full SVD, |A - U*D*VT|=%v", prefix, resid)
}
if minmn > 0 {
// Check that uAll is orthogonal.
q := blas64.General{Rows: m, Cols: m, Data: uAll, Stride: ldu}
if resid := residualOrthogonal(q, false); resid > tolOrtho*float64(m) {
t.Errorf("Case %v: UAll is not orthogonal; resid=%v, want<=%v", prefix, resid, tolOrtho*float64(m))
}
// Check that vtAll is orthogonal.
q = blas64.General{Rows: n, Cols: n, Data: vtAll, Stride: ldvt}
if resid := residualOrthogonal(q, false); resid > tolOrtho*float64(n) {
t.Errorf("Case %v: VTAll is not orthogonal; resid=%v, want<=%v", prefix, resid, tolOrtho*float64(n))
}
}
// Check that singular values are decreasing.
if !sort.IsSorted(sort.Reverse(sort.Float64Slice(sAll))) {
t.Errorf("Case %v: singular values from full SVD are not decreasing", prefix)
}
// Check that singular values are non-negative.
if minmn > 0 && floats.Min(sAll) < 0 {
t.Errorf("Case %v: some singular values from full SVD are negative", prefix)
}
// Do partial SVD and compare the results to sAll, uAll, and vtAll.
for _, jobU := range []lapack.SVDJob{lapack.SVDAll, lapack.SVDStore, lapack.SVDOverwrite, lapack.SVDNone} {
for _, jobVT := range []lapack.SVDJob{lapack.SVDAll, lapack.SVDStore, lapack.SVDOverwrite, lapack.SVDNone} {
if jobU == lapack.SVDOverwrite || jobVT == lapack.SVDOverwrite {
// Not implemented.
continue
}
if jobU == lapack.SVDAll && jobVT == lapack.SVDAll {
// Already checked above.
continue
}
prefix := prefix + ",job=" + svdJobString(jobU) + "U-" + svdJobString(jobVT) + "VT"
// Restore A to its original values.
copy(a, aCopy)
// Allocate slices for the results of partial SVD and fill them.
u := make([]float64, m*ldu)
for i := range u {
u[i] = rnd.NormFloat64()
}
vt := make([]float64, n*ldvt)
for i := range vt {
vt[i] = rnd.NormFloat64()
}
s := make([]float64, min(m, n))
for i := range s {
s[i] = math.NaN()
}
for i := range work {
work[i] = math.NaN()
}
ok := impl.Dgesvd(jobU, jobVT, m, n, a, lda, s, u, ldu, vt, ldvt, work, len(work))
if !ok {
t.Fatalf("Case %v: unexpected failure in partial Dgesvd", prefix)
}
if minmn == 0 {
// No panic and the result is ok, there is
// nothing else to check.
continue
}
// Check that U has orthogonal columns and that it matches UAll.
switch jobU {
case lapack.SVDStore:
q := blas64.General{Rows: m, Cols: minmn, Data: u, Stride: ldu}
if resid := residualOrthogonal(q, false); resid > tolOrtho*float64(m) {
t.Errorf("Case %v: columns of U are not orthogonal; resid=%v, want<=%v", prefix, resid, tolOrtho*float64(m))
}
if res := svdPartialUResidual(m, minmn, u, uAll, ldu); res > tol {
t.Errorf("Case %v: columns of U do not match UAll", prefix)
}
case lapack.SVDAll:
q := blas64.General{Rows: m, Cols: m, Data: u, Stride: ldu}
if resid := residualOrthogonal(q, false); resid > tolOrtho*float64(m) {
t.Errorf("Case %v: columns of U are not orthogonal; resid=%v, want<=%v", prefix, resid, tolOrtho*float64(m))
}
if res := svdPartialUResidual(m, m, u, uAll, ldu); res > tol {
t.Errorf("Case %v: columns of U do not match UAll", prefix)
}
}
// Check that VT has orthogonal rows and that it matches VTAll.
switch jobVT {
case lapack.SVDStore:
q := blas64.General{Rows: minmn, Cols: n, Data: vtAll, Stride: ldvt}
if resid := residualOrthogonal(q, true); resid > tolOrtho*float64(n) {
t.Errorf("Case %v: rows of VT are not orthogonal; resid=%v, want<=%v", prefix, resid, tolOrtho*float64(n))
}
if res := svdPartialVTResidual(minmn, n, vt, vtAll, ldvt); res > tol {
t.Errorf("Case %v: rows of VT do not match VTAll", prefix)
}
case lapack.SVDAll:
q := blas64.General{Rows: n, Cols: n, Data: vtAll, Stride: ldvt}
if resid := residualOrthogonal(q, true); resid > tolOrtho*float64(n) {
t.Errorf("Case %v: rows of VT are not orthogonal; resid=%v, want<=%v", prefix, resid, tolOrtho*float64(n))
}
if res := svdPartialVTResidual(n, n, vt, vtAll, ldvt); res > tol {
t.Errorf("Case %v: rows of VT do not match VTAll", prefix)
}
}
// Check that singular values are decreasing.
if !sort.IsSorted(sort.Reverse(sort.Float64Slice(s))) {
t.Errorf("Case %v: singular values from full SVD are not decreasing", prefix)
}
// Check that singular values are non-negative.
if floats.Min(s) < 0 {
t.Errorf("Case %v: some singular values from full SVD are negative", prefix)
}
if !floats.EqualApprox(s, sAll, tol/10) {
t.Errorf("Case %v: singular values differ between full and partial SVD\n%v\n%v", prefix, s, sAll)
}
}
}
}
}
// svdFullResidual returns
//
// |A - U*D*VT| / (n * aNorm)
//
// where U, D, and VT are as computed by Dgesvd with jobU = jobVT = lapack.SVDAll.
func svdFullResidual(m, n int, aNorm float64, a []float64, lda int, u []float64, ldu int, d []float64, vt []float64, ldvt int) float64 {
// The implementation follows TESTING/dbdt01.f from the reference.
minmn := min(m, n)
if minmn == 0 {
return 0
}
// j-th column of A - U*D*VT.
aMinusUDVT := make([]float64, m)
// D times the j-th column of VT.
dvt := make([]float64, minmn)
// Compute the residual |A - U*D*VT| one column at a time.
var resid float64
for j := 0; j < n; j++ {
// Copy j-th column of A to aj.
blas64.Copy(blas64.Vector{N: m, Data: a[j:], Inc: lda}, blas64.Vector{N: m, Data: aMinusUDVT, Inc: 1})
// Multiply D times j-th column of VT.
for i := 0; i < minmn; i++ {
dvt[i] = d[i] * vt[i*ldvt+j]
}
// Compute the j-th column of A - U*D*VT.
blas64.Gemv(blas.NoTrans,
-1, blas64.General{Rows: m, Cols: minmn, Data: u, Stride: ldu}, blas64.Vector{N: minmn, Data: dvt, Inc: 1},
1, blas64.Vector{N: m, Data: aMinusUDVT, Inc: 1})
resid = math.Max(resid, blas64.Asum(blas64.Vector{N: m, Data: aMinusUDVT, Inc: 1}))
}
if aNorm == 0 {
if resid != 0 {
// Original matrix A is zero but the residual is non-zero,
// return infinity.
return math.Inf(1)
}
// Original matrix A is zero, residual is zero, return 0.
return 0
}
// Original matrix A is non-zero.
if aNorm >= resid {
resid = resid / aNorm / float64(n)
} else {
if aNorm < 1 {
resid = math.Min(resid, float64(n)*aNorm) / aNorm / float64(n)
} else {
resid = math.Min(resid/aNorm, float64(n)) / float64(n)
}
}
return resid
}
// svdPartialUResidual compares U and URef to see if their columns span the same
// spaces. It returns the maximum over columns of
//
// |URef(i) - S*U(i)|
//
// where URef(i) and U(i) are the i-th columns of URef and U, respectively, and
// S is ±1 chosen to minimize the expression.
func svdPartialUResidual(m, n int, u, uRef []float64, ldu int) float64 {
var res float64
for j := 0; j < n; j++ {
imax := blas64.Iamax(blas64.Vector{N: m, Data: uRef[j:], Inc: ldu})
s := math.Copysign(1, uRef[imax*ldu+j]) * math.Copysign(1, u[imax*ldu+j])
for i := 0; i < m; i++ {
diff := math.Abs(uRef[i*ldu+j] - s*u[i*ldu+j])
res = math.Max(res, diff)
}
}
return res
}
// svdPartialVTResidual compares VT and VTRef to see if their rows span the same
// spaces. It returns the maximum over rows of
//
// |VTRef(i) - S*VT(i)|
//
// where VTRef(i) and VT(i) are the i-th columns of VTRef and VT, respectively, and
// S is ±1 chosen to minimize the expression.
func svdPartialVTResidual(m, n int, vt, vtRef []float64, ldvt int) float64 {
var res float64
for i := 0; i < m; i++ {
jmax := blas64.Iamax(blas64.Vector{N: n, Data: vtRef[i*ldvt:], Inc: 1})
s := math.Copysign(1, vtRef[i*ldvt+jmax]) * math.Copysign(1, vt[i*ldvt+jmax])
for j := 0; j < n; j++ {
diff := math.Abs(vtRef[i*ldvt+j] - s*vt[i*ldvt+j])
res = math.Max(res, diff)
}
}
return res
}
|