1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
// Copyright ©2021 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testlapack
import (
"fmt"
"math"
"testing"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/floats"
)
type Dlag2er interface {
Dlag2(a []float64, lda int, b []float64, ldb int) (scale1, scale2, wr1, wr2, wi float64)
}
func Dlag2Test(t *testing.T, impl Dlag2er) {
rnd := rand.New(rand.NewSource(1))
for _, lda := range []int{2, 5} {
for _, ldb := range []int{2, 5} {
for aKind := 0; aKind <= 20; aKind++ {
for bKind := 0; bKind <= 20; bKind++ {
dlag2Test(t, impl, rnd, lda, ldb, aKind, bKind)
}
}
}
}
}
func dlag2Test(t *testing.T, impl Dlag2er, rnd *rand.Rand, lda, ldb int, aKind, bKind int) {
const tol = 1e-14
a := makeDlag2TestMatrix(rnd, lda, aKind)
b := makeDlag2TestMatrix(rnd, ldb, bKind)
aCopy := cloneGeneral(a)
bCopy := cloneGeneral(b)
scale1, scale2, wr1, wr2, wi := impl.Dlag2(a.Data, a.Stride, b.Data, b.Stride)
name := fmt.Sprintf("lda=%d,ldb=%d,aKind=%d,bKind=%d", lda, ldb, aKind, bKind)
aStr := fmt.Sprintf("A = [%g,%g]\n [%g,%g]", a.Data[0], a.Data[1], a.Data[a.Stride], a.Data[a.Stride+1])
bStr := fmt.Sprintf("B = [%g,%g]\n [%g,%g]", b.Data[0], b.Data[1], 0.0, b.Data[b.Stride+1])
if !floats.Same(a.Data, aCopy.Data) {
t.Errorf("%s: unexpected modification of a", name)
}
if !floats.Same(b.Data, bCopy.Data) {
t.Errorf("%s: unexpected modification of b", name)
}
if wi < 0 {
t.Fatalf("%s: wi is negative; wi=%g,\n%s\n%s", name, wi, aStr, bStr)
return
}
if wi > 0 {
if wr1 != wr2 {
t.Fatalf("%s: complex eigenvalue but wr1 != wr2; wr1=%g, wr2=%g,\n%s\n%s", name, wr1, wr2, aStr, bStr)
return
}
if scale1 != scale2 {
t.Fatalf("%s: complex eigenvalue but scale1 != scale2; scale1=%g, scale2=%g,\n%s\n%s", name, scale1, scale2, aStr, bStr)
return
}
}
resid, err := residualDlag2(a, b, scale1, complex(wr1, wi))
if err != nil {
t.Logf("%s: invalid input data: %v\n%s\n%s", name, err, aStr, bStr)
return
}
if resid > tol || math.IsNaN(resid) {
t.Errorf("%s: unexpected first eigenvalue %g with s=%g; resid=%g, want<=%g\n%s\n%s", name, complex(wr1, wi), scale1, resid, tol, aStr, bStr)
}
resid, err = residualDlag2(a, b, scale2, complex(wr2, -wi))
if err != nil {
t.Logf("%s: invalid input data: %s\n%s\n%s", name, err, aStr, bStr)
return
}
if resid > tol || math.IsNaN(resid) {
t.Errorf("%s: unexpected second eigenvalue %g with s=%g; resid=%g, want<=%g\n%s\n%s", name, complex(wr2, -wi), scale2, resid, tol, aStr, bStr)
}
}
func makeDlag2TestMatrix(rnd *rand.Rand, ld, kind int) blas64.General {
a := zeros(2, 2, ld)
switch kind {
case 0:
// Zero matrix.
case 1:
// Identity.
a.Data[0] = 1
a.Data[a.Stride+1] = 1
case 2:
// Large diagonal.
a.Data[0] = 2 * safmax
a.Data[a.Stride+1] = 2 * safmax
case 3:
// Tiny diagonal.
a.Data[0] = safmin
a.Data[a.Stride+1] = safmin
case 4:
// Tiny and large diagonal.
a.Data[0] = safmin
a.Data[a.Stride+1] = safmax
case 5:
// Large and tiny diagonal.
a.Data[0] = safmax
a.Data[a.Stride+1] = safmin
case 6:
// Large complex eigenvalue.
a.Data[0] = safmax
a.Data[1] = safmax
a.Data[a.Stride] = -safmax
a.Data[a.Stride+1] = safmax
case 7:
// Tiny complex eigenvalue.
a.Data[0] = safmin
a.Data[1] = safmin
a.Data[a.Stride] = -safmin
a.Data[a.Stride+1] = safmin
case 8:
// Random matrix with large elements.
a.Data[0] = safmax * (2*rnd.Float64() - 1)
a.Data[1] = safmax * (2*rnd.Float64() - 1)
a.Data[a.Stride] = safmax * (2*rnd.Float64() - 1)
a.Data[a.Stride+1] = safmax * (2*rnd.Float64() - 1)
case 9:
// Random matrix with tiny elements.
a.Data[0] = safmin * (2*rnd.Float64() - 1)
a.Data[1] = safmin * (2*rnd.Float64() - 1)
a.Data[a.Stride] = safmin * (2*rnd.Float64() - 1)
a.Data[a.Stride+1] = safmin * (2*rnd.Float64() - 1)
default:
// Random matrix.
a = randomGeneral(2, 2, ld, rnd)
}
return a
}
// residualDlag2 returns the value of
//
// | det( s*A - w*B ) |
// -------------------------------------------
// max(s*norm(A), |w|*norm(B))*norm(s*A - w*B)
//
// that can be used to check the generalized eigenvalues computed by Dlag2 and
// an error that indicates invalid input data.
func residualDlag2(a, b blas64.General, s float64, w complex128) (float64, error) {
const ulp = dlamchP
a11, a12 := a.Data[0], a.Data[1]
a21, a22 := a.Data[a.Stride], a.Data[a.Stride+1]
b11, b12 := b.Data[0], b.Data[1]
b22 := b.Data[b.Stride+1]
// Compute norms.
absw := zabs(w)
anorm := math.Max(math.Abs(a11)+math.Abs(a21), math.Abs(a12)+math.Abs(a22))
anorm = math.Max(anorm, safmin)
bnorm := math.Max(math.Abs(b11), math.Abs(b12)+math.Abs(b22))
bnorm = math.Max(bnorm, safmin)
// Check for possible overflow.
temp := (safmin*anorm)*s + (safmin*bnorm)*absw
if temp >= 1 {
// Scale down to avoid overflow.
s /= temp
w = scale(1/temp, w)
absw = zabs(w)
}
// Check for w and s essentially zero.
s1 := math.Max(ulp*math.Max(s*anorm, absw*bnorm), safmin*math.Max(s, absw))
if s1 < safmin {
if s < safmin && absw < safmin {
return 1 / ulp, fmt.Errorf("ulp*max(s*|A|,|w|*|B|) < safmin and s and w could not be scaled; s=%g, |w|=%g", s, absw)
}
// Scale up to avoid underflow.
temp = 1 / math.Max(s*anorm+absw*bnorm, safmin)
s *= temp
w = scale(temp, w)
absw = zabs(w)
s1 = math.Max(ulp*math.Max(s*anorm, absw*bnorm), safmin*math.Max(s, absw))
if s1 < safmin {
return 1 / ulp, fmt.Errorf("ulp*max(s*|A|,|w|*|B|) < safmin and s and w could not be scaled; s=%g, |w|=%g", s, absw)
}
}
// Compute C = s*A - w*B.
c11 := complex(s*a11, 0) - w*complex(b11, 0)
c12 := complex(s*a12, 0) - w*complex(b12, 0)
c21 := complex(s*a21, 0)
c22 := complex(s*a22, 0) - w*complex(b22, 0)
// Compute norm(s*A - w*B).
cnorm := math.Max(zabs(c11)+zabs(c21), zabs(c12)+zabs(c22))
// Compute det(s*A - w*B)/norm(s*A - w*B).
cs := 1 / math.Sqrt(math.Max(cnorm, safmin))
det := cmplxdet2x2(scale(cs, c11), scale(cs, c12), scale(cs, c21), scale(cs, c22))
// Compute |det(s*A - w*B)|/(norm(s*A - w*B)*max(s*norm(A), |w|*norm(B))).
return zabs(det) / s1 * ulp, nil
}
func zabs(z complex128) float64 {
return math.Abs(real(z)) + math.Abs(imag(z))
}
// scale scales the complex number c by f.
func scale(f float64, c complex128) complex128 {
return complex(f*real(c), f*imag(c))
}
// cmplxdet2x2 returns the determinant of
//
// |a11 a12|
// |a21 a22|
func cmplxdet2x2(a11, a12, a21, a22 complex128) complex128 {
return a11*a22 - a12*a21
}
|