1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testlapack
import (
"fmt"
"math"
"testing"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
)
type Dlatrser interface {
Dlatrs(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, normin bool, n int, a []float64, lda int, x []float64, cnorm []float64) (scale float64)
}
func DlatrsTest(t *testing.T, impl Dlatrser) {
rnd := rand.New(rand.NewSource(1))
for _, uplo := range []blas.Uplo{blas.Upper, blas.Lower} {
for _, trans := range []blas.Transpose{blas.Trans, blas.NoTrans} {
for _, n := range []int{0, 1, 2, 3, 4, 5, 6, 7, 10, 20, 50, 100} {
for _, lda := range []int{n, 2*n + 1} {
lda = max(1, lda)
imats := []int{7, 11, 12, 13, 14, 15, 16, 17, 18, 19}
if n < 6 {
imats = append(imats, 19)
}
for _, imat := range imats {
testDlatrs(t, impl, imat, uplo, trans, n, lda, rnd)
}
}
}
}
}
}
func testDlatrs(t *testing.T, impl Dlatrser, imat int, uplo blas.Uplo, trans blas.Transpose, n, lda int, rnd *rand.Rand) {
const tol = 1e-14
a := nanSlice(n * lda)
b := nanSlice(n)
work := make([]float64, 3*n)
// Generate triangular test matrix and right hand side.
diag := dlattr(imat, uplo, trans, n, a, lda, b, work, rnd)
if imat <= 10 {
// b has not been generated.
dlarnv(b, 3, rnd)
}
cnorm := nanSlice(n)
x := make([]float64, n)
// Call Dlatrs with normin=false.
copy(x, b)
scale := impl.Dlatrs(uplo, trans, diag, false, n, a, lda, x, cnorm)
prefix := fmt.Sprintf("Case imat=%v (n=%v,lda=%v,trans=%c,uplo=%c,diag=%c", imat, n, lda, trans, uplo, diag)
for i, v := range cnorm {
if math.IsNaN(v) {
t.Errorf("%v: cnorm[%v] not computed (scale=%v,normin=false)", prefix, i, scale)
}
}
resid, hasNaN := dlatrsResidual(uplo, trans, diag, n, a, lda, scale, cnorm, x, b, work[:n])
if hasNaN {
t.Errorf("%v: unexpected NaN (scale=%v,normin=false)", prefix, scale)
} else if resid > tol {
t.Errorf("%v: residual %v too large (scale=%v,normin=false)", prefix, resid, scale)
}
// Call Dlatrs with normin=true because cnorm has been filled.
copy(x, b)
scale = impl.Dlatrs(uplo, trans, diag, true, n, a, lda, x, cnorm)
resid, hasNaN = dlatrsResidual(uplo, trans, diag, n, a, lda, scale, cnorm, x, b, work[:n])
if hasNaN {
t.Errorf("%v: unexpected NaN (scale=%v,normin=true)", prefix, scale)
} else if resid > tol {
t.Errorf("%v: residual %v too large (scale=%v,normin=true)", prefix, resid, scale)
}
}
// dlatrsResidual returns norm(trans(A)*x-scale*b) / (norm(trans(A))*norm(x)*eps)
// and whether NaN has been encountered in the process.
func dlatrsResidual(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, n int, a []float64, lda int, scale float64, cnorm []float64, x, b, work []float64) (resid float64, hasNaN bool) {
if n == 0 {
return 0, false
}
// Compute the norm of the triangular matrix A using the column norms
// already computed by Dlatrs.
var tnorm float64
if diag == blas.NonUnit {
for j := 0; j < n; j++ {
tnorm = math.Max(tnorm, math.Abs(a[j*lda+j])+cnorm[j])
}
} else {
for j := 0; j < n; j++ {
tnorm = math.Max(tnorm, 1+cnorm[j])
}
}
const (
eps = dlamchE
tiny = safmin
)
bi := blas64.Implementation()
// Compute norm(trans(A)*x-scale*b) / (norm(trans(A))*norm(x)*eps)
copy(work, x)
ix := bi.Idamax(n, work, 1)
xnorm := math.Max(1, math.Abs(work[ix]))
xscal := 1 / xnorm / float64(n)
bi.Dscal(n, xscal, work, 1)
bi.Dtrmv(uplo, trans, diag, n, a, lda, work, 1)
bi.Daxpy(n, -scale*xscal, b, 1, work, 1)
for _, v := range work {
if math.IsNaN(v) {
return 1 / eps, true
}
}
ix = bi.Idamax(n, work, 1)
resid = math.Abs(work[ix])
ix = bi.Idamax(n, x, 1)
xnorm = math.Abs(x[ix])
if resid*tiny <= xnorm {
if xnorm > 0 {
resid /= xnorm
}
} else if resid > 0 {
resid = 1 / eps
}
if resid*tiny <= tnorm {
if tnorm > 0 {
resid /= tnorm
}
} else if resid > 0 {
resid = 1 / eps
}
return resid, false
}
|