1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
|
// Copyright ©2021 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testlapack
import (
"fmt"
"math"
"testing"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/lapack"
)
type Dorgr2er interface {
Dorgr2(m, n, k int, a []float64, lda int, tau []float64, work []float64)
Dgerqfer
}
func Dorgr2Test(t *testing.T, impl Dorgr2er) {
rnd := rand.New(rand.NewSource(1))
for _, k := range []int{0, 1, 2, 5} {
for _, m := range []int{k, k + 1, k + 2, k + 4} {
for _, n := range []int{m, m + 1, m + 2, m + 4, m + 7} {
for _, lda := range []int{max(1, n), n + 5} {
dorgr2Test(t, impl, rnd, m, n, k, lda)
}
}
}
}
}
func dorgr2Test(t *testing.T, impl Dorgr2er, rnd *rand.Rand, m, n, k, lda int) {
const tol = 1e-14
name := fmt.Sprintf("m=%v,n=%v,k=%v,lda=%v", m, n, k, lda)
// Generate a random m×n matrix A.
a := randomGeneral(m, n, lda, rnd)
// Compute the RQ decomposition of A.
rq := cloneGeneral(a)
tau := make([]float64, m)
work := make([]float64, 1)
impl.Dgerqf(m, n, rq.Data, rq.Stride, tau, work, -1)
work = make([]float64, int(work[0]))
impl.Dgerqf(m, n, rq.Data, rq.Stride, tau, work, len(work))
tauCopy := make([]float64, len(tau))
copy(tauCopy, tau)
// Compute the matrix Q using Dorg2r.
q := cloneGeneral(rq)
impl.Dorgr2(m, n, k, q.Data, q.Stride, tau[m-k:m], work)
if m == 0 {
return
}
// Check that tau hasn't been modified.
if !floats.Equal(tau, tauCopy) {
t.Errorf("%v: unexpected modification in tau", name)
}
// Check that Q has orthonormal rows.
res := residualOrthogonal(q, true)
if res > tol || math.IsNaN(res) {
t.Errorf("%v: residual |I - Q*Qᵀ| too large, got %v, want <= %v", name, res, tol)
}
if k == 0 {
return
}
// Extract the k×m upper triangular matrix R from RQ[m-k:m,n-k:n].
r := zeros(k, m, m)
for i := 0; i < k; i++ {
for j := 0; j < k; j++ {
ii := rq.Rows - k + i
jj := rq.Cols - k + j
jr := r.Cols - k + j
if i <= j {
r.Data[i*r.Stride+jr] = rq.Data[ii*rq.Stride+jj]
}
}
}
// Construct a view A[m-k:m,0:n] of the last k rows of A.
aRec := blas64.General{
Rows: k,
Cols: n,
Data: a.Data[(m-k)*a.Stride:],
Stride: a.Stride,
}
// Compute A - R*Q.
blas64.Gemm(blas.NoTrans, blas.NoTrans, -1, r, q, 1, aRec)
// Check that |A - R*Q| is small.
res = dlange(lapack.MaxColumnSum, aRec.Rows, aRec.Cols, aRec.Data, aRec.Stride)
if res > tol || math.IsNaN(res) {
t.Errorf("%v: residual |A - R*Q| too large, got %v, want <= %v", name, res, tol)
}
}
|