1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testlapack
import (
"fmt"
"testing"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/floats"
)
type Dorgtrer interface {
Dorgtr(uplo blas.Uplo, n int, a []float64, lda int, tau, work []float64, lwork int)
Dsytrder
}
func DorgtrTest(t *testing.T, impl Dorgtrer) {
const tol = 1e-14
rnd := rand.New(rand.NewSource(1))
for _, uplo := range []blas.Uplo{blas.Upper, blas.Lower} {
for _, wl := range []worklen{minimumWork, mediumWork, optimumWork} {
for _, test := range []struct {
n, lda int
}{
{1, 0},
{2, 0},
{3, 0},
{6, 0},
{33, 0},
{100, 0},
{1, 3},
{2, 5},
{3, 7},
{6, 10},
{33, 50},
{100, 120},
} {
n := test.n
lda := test.lda
if lda == 0 {
lda = n
}
// Allocate n×n matrix A and fill it with random numbers.
a := make([]float64, n*lda)
for i := range a {
a[i] = rnd.NormFloat64()
}
aCopy := make([]float64, len(a))
copy(aCopy, a)
// Allocate slices for the main diagonal and the
// first off-diagonal of the tri-diagonal matrix.
d := make([]float64, n)
e := make([]float64, n-1)
// Allocate slice for elementary reflector scales.
tau := make([]float64, n-1)
// Compute optimum workspace size for Dorgtr call.
work := make([]float64, 1)
impl.Dsytrd(uplo, n, a, lda, d, e, tau, work, -1)
work = make([]float64, int(work[0]))
// Compute elementary reflectors that reduce the
// symmetric matrix defined by the uplo triangle
// of A to a tridiagonal matrix.
impl.Dsytrd(uplo, n, a, lda, d, e, tau, work, len(work))
// Compute workspace size for Dorgtr call.
var lwork int
switch wl {
case minimumWork:
lwork = max(1, n-1)
case mediumWork:
work := make([]float64, 1)
impl.Dorgtr(uplo, n, a, lda, tau, work, -1)
lwork = (int(work[0]) + n - 1) / 2
lwork = max(1, lwork)
case optimumWork:
work := make([]float64, 1)
impl.Dorgtr(uplo, n, a, lda, tau, work, -1)
lwork = int(work[0])
}
work = nanSlice(lwork)
// Generate an orthogonal matrix Q that reduces
// the uplo triangle of A to a tridiagonal matrix.
impl.Dorgtr(uplo, n, a, lda, tau, work, len(work))
q := blas64.General{
Rows: n,
Cols: n,
Stride: lda,
Data: a,
}
name := fmt.Sprintf("uplo=%c,n=%v,lda=%v,work=%v", uplo, n, lda, wl)
if resid := residualOrthogonal(q, false); resid > tol*float64(n) {
t.Errorf("Case %v: Q is not orthogonal; resid=%v, want<=%v", name, resid, tol*float64(n))
}
// Create the tridiagonal matrix explicitly in
// dense representation from the diagonals d and e.
tri := blas64.General{
Rows: n,
Cols: n,
Stride: n,
Data: make([]float64, n*n),
}
for i := 0; i < n; i++ {
tri.Data[i*tri.Stride+i] = d[i]
if i != n-1 {
tri.Data[i*tri.Stride+i+1] = e[i]
tri.Data[(i+1)*tri.Stride+i] = e[i]
}
}
// Create the symmetric matrix A from the uplo
// triangle of aCopy, storing it explicitly in dense form.
aMat := blas64.General{
Rows: n,
Cols: n,
Stride: n,
Data: make([]float64, n*n),
}
if uplo == blas.Upper {
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
v := aCopy[i*lda+j]
aMat.Data[i*aMat.Stride+j] = v
aMat.Data[j*aMat.Stride+i] = v
}
}
} else {
for i := 0; i < n; i++ {
for j := 0; j <= i; j++ {
v := aCopy[i*lda+j]
aMat.Data[i*aMat.Stride+j] = v
aMat.Data[j*aMat.Stride+i] = v
}
}
}
// Compute Qᵀ * A * Q and store the result in ans.
tmp := blas64.General{Rows: n, Cols: n, Stride: n, Data: make([]float64, n*n)}
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, aMat, q, 0, tmp)
ans := blas64.General{Rows: n, Cols: n, Stride: n, Data: make([]float64, n*n)}
blas64.Gemm(blas.Trans, blas.NoTrans, 1, q, tmp, 0, ans)
// Compare the tridiagonal matrix tri from
// Dorgtr with the explicit computation ans.
if !floats.EqualApprox(ans.Data, tri.Data, tol) {
t.Errorf("Case %v: Recombination mismatch", name)
}
}
}
}
}
|