1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testlapack
import (
"fmt"
"math"
"sort"
"testing"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/lapack"
)
type Dsterfer interface {
Dsteqrer
Dlansyer
Dsterf(n int, d, e []float64) (ok bool)
}
func DsterfTest(t *testing.T, impl Dsterfer) {
const tol = 1e-14
// Tests with precomputed eigenvalues.
for cas, test := range []struct {
d []float64
e []float64
n int
want []float64
}{
{
d: []float64{1, 3, 4, 6},
e: []float64{2, 4, 5},
n: 4,
// Computed from original Fortran code.
want: []float64{11.046227528488854, 4.795922173417400, -2.546379458290125, 0.704229756383872},
},
} {
n := test.n
got := make([]float64, len(test.d))
copy(got, test.d)
e := make([]float64, len(test.e))
copy(e, test.e)
ok := impl.Dsterf(n, got, e)
if !ok {
t.Errorf("Case %d, n=%v: Dsterf failed", cas, n)
continue
}
want := make([]float64, len(test.want))
copy(want, test.want)
sort.Float64s(want)
diff := floats.Distance(got, want, math.Inf(1))
if diff > tol {
t.Errorf("Case %d, n=%v: unexpected result, |dGot-dWant|=%v", cas, n, diff)
}
}
rnd := rand.New(rand.NewSource(1))
// Probabilistic tests.
for _, n := range []int{0, 1, 2, 3, 4, 5, 6, 10, 50} {
for typ := 0; typ <= 8; typ++ {
d := make([]float64, n)
var e []float64
if n > 1 {
e = make([]float64, n-1)
}
// Generate a tridiagonal matrix A.
switch typ {
case 0:
// The zero matrix.
case 1:
// The identity matrix.
for i := range d {
d[i] = 1
}
case 2:
// A diagonal matrix with evenly spaced entries
// 1, ..., eps and random signs.
for i := 0; i < n; i++ {
if i == 0 {
d[i] = 1
} else {
d[i] = 1 - (1-dlamchE)*float64(i)/float64(n-1)
}
if rnd.Float64() < 0.5 {
d[i] *= -1
}
}
case 3, 4, 5:
// A diagonal matrix with geometrically spaced entries
// 1, ..., eps and random signs.
for i := 0; i < n; i++ {
if i == 0 {
d[i] = 1
} else {
d[i] = math.Pow(dlamchE, float64(i)/float64(n-1))
}
if rnd.Float64() < 0.5 {
d[i] *= -1
}
}
switch typ {
case 4:
// Multiply by SQRT(overflow threshold).
floats.Scale(math.Sqrt(1/dlamchS), d)
case 5:
// Multiply by SQRT(underflow threshold).
floats.Scale(math.Sqrt(dlamchS), d)
}
case 6:
// A diagonal matrix with "clustered" entries 1, eps, ..., eps
// and random signs.
for i := range d {
if i == 0 {
d[i] = 1
} else {
d[i] = dlamchE
}
}
for i := range d {
if rnd.Float64() < 0.5 {
d[i] *= -1
}
}
case 7:
// Diagonal matrix with random entries.
for i := range d {
d[i] = rnd.NormFloat64()
}
case 8:
// Random symmetric tridiagonal matrix.
for i := range d {
d[i] = rnd.NormFloat64()
}
for i := range e {
e[i] = rnd.NormFloat64()
}
}
eCopy := make([]float64, len(e))
copy(eCopy, e)
name := fmt.Sprintf("n=%d,type=%d", n, typ)
// Compute the eigenvalues of A using Dsterf.
dGot := make([]float64, len(d))
copy(dGot, d)
ok := impl.Dsterf(n, dGot, e)
if !ok {
t.Errorf("%v: Dsterf failed", name)
continue
}
if n == 0 {
continue
}
// Test that the eigenvalues are sorted.
if !sort.Float64sAreSorted(dGot) {
t.Errorf("%v: eigenvalues are not sorted", name)
continue
}
// Compute the expected eigenvalues of A using Dsteqr.
dWant := make([]float64, len(d))
copy(dWant, d)
copy(e, eCopy)
z := nanGeneral(n, n, n)
ok = impl.Dsteqr(lapack.EVTridiag, n, dWant, e, z.Data, z.Stride, make([]float64, 2*n))
if !ok {
t.Errorf("%v: computing reference solution using Dsteqr failed", name)
continue
}
if resid := residualOrthogonal(z, false); resid > tol*float64(n) {
t.Errorf("%v: Z is not orthogonal; resid=%v, want<=%v", name, resid, tol*float64(n))
}
// Check whether eigenvalues from Dsteqr and Dsterf (which use
// different algorithms) are equal.
var diff, dMax float64
for i, di := range dGot {
diffAbs := math.Abs(di - dWant[i])
diff = math.Max(diff, diffAbs)
dAbs := math.Max(math.Abs(di), math.Abs(dWant[i]))
dMax = math.Max(dMax, dAbs)
}
dMax = math.Max(dlamchS, dMax)
if diff > tol*dMax {
t.Errorf("%v: unexpected result; |dGot-dWant|=%v", name, diff)
}
// Construct A as a symmetric dense matrix and compute its 1-norm.
copy(e, eCopy)
lda := n
a := make([]float64, n*lda)
var anorm, tmp float64
for i := 0; i < n-1; i++ {
a[i*lda+i] = d[i]
a[i*lda+i+1] = e[i]
tmp2 := math.Abs(e[i])
anorm = math.Max(anorm, math.Abs(d[i])+tmp+tmp2)
tmp = tmp2
}
a[(n-1)*lda+n-1] = d[n-1]
anorm = math.Max(anorm, math.Abs(d[n-1])+tmp)
// Compute A - Z D Zᵀ. The result should be the zero matrix.
bi := blas64.Implementation()
for i := 0; i < n; i++ {
bi.Dsyr(blas.Upper, n, -dGot[i], z.Data[i:], z.Stride, a, lda)
}
// Compute |A - Z D Zᵀ|.
wnorm := impl.Dlansy(lapack.MaxColumnSum, blas.Upper, n, a, lda, make([]float64, n))
// Compute diff := |A - Z D Zᵀ| / (|A| N).
if anorm > wnorm {
diff = wnorm / anorm / float64(n)
} else {
if anorm < 1 {
diff = math.Min(wnorm, float64(n)*anorm) / anorm / float64(n)
} else {
diff = math.Min(wnorm/anorm, float64(n)) / float64(n)
}
}
// Check whether diff is small.
if diff > tol {
t.Errorf("%v: unexpected result; |A - Z D Zᵀ|/(|A| n)=%v", name, diff)
}
}
}
}
|