1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
|
// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack"
"gonum.org/v1/gonum/lapack/lapack64"
)
var (
dense *Dense
_ Matrix = dense
_ allMatrix = dense
_ denseMatrix = dense
_ Mutable = dense
_ ClonerFrom = dense
_ RowViewer = dense
_ ColViewer = dense
_ RawRowViewer = dense
_ Grower = dense
_ RawMatrixSetter = dense
_ RawMatrixer = dense
_ Reseter = dense
)
// Dense is a dense matrix representation.
type Dense struct {
mat blas64.General
capRows, capCols int
}
// NewDense creates a new Dense matrix with r rows and c columns. If data == nil,
// a new slice is allocated for the backing slice. If len(data) == r*c, data is
// used as the backing slice, and changes to the elements of the returned Dense
// will be reflected in data. If neither of these is true, NewDense will panic.
// NewDense will panic if either r or c is zero.
//
// The data must be arranged in row-major order, i.e. the (i*c + j)-th
// element in the data slice is the {i, j}-th element in the matrix.
func NewDense(r, c int, data []float64) *Dense {
if r <= 0 || c <= 0 {
if r == 0 || c == 0 {
panic(ErrZeroLength)
}
panic(ErrNegativeDimension)
}
if data != nil && r*c != len(data) {
panic(ErrShape)
}
if data == nil {
data = make([]float64, r*c)
}
return &Dense{
mat: blas64.General{
Rows: r,
Cols: c,
Stride: c,
Data: data,
},
capRows: r,
capCols: c,
}
}
// ReuseAs changes the receiver if it IsEmpty() to be of size r×c.
//
// ReuseAs re-uses the backing data slice if it has sufficient capacity,
// otherwise a new slice is allocated. The backing data is zero on return.
//
// ReuseAs panics if the receiver is not empty, and panics if
// the input sizes are less than one. To empty the receiver for re-use,
// Reset should be used.
func (m *Dense) ReuseAs(r, c int) {
if r <= 0 || c <= 0 {
if r == 0 || c == 0 {
panic(ErrZeroLength)
}
panic(ErrNegativeDimension)
}
if !m.IsEmpty() {
panic(ErrReuseNonEmpty)
}
m.reuseAsZeroed(r, c)
}
// reuseAsNonZeroed resizes an empty matrix to a r×c matrix,
// or checks that a non-empty matrix is r×c. It does not zero
// the data in the receiver.
func (m *Dense) reuseAsNonZeroed(r, c int) {
// reuseAs must be kept in sync with reuseAsZeroed.
if m.mat.Rows > m.capRows || m.mat.Cols > m.capCols {
// Panic as a string, not a mat.Error.
panic(badCap)
}
if r == 0 || c == 0 {
panic(ErrZeroLength)
}
if m.IsEmpty() {
m.mat = blas64.General{
Rows: r,
Cols: c,
Stride: c,
Data: use(m.mat.Data, r*c),
}
m.capRows = r
m.capCols = c
return
}
if r != m.mat.Rows || c != m.mat.Cols {
panic(ErrShape)
}
}
// reuseAsZeroed resizes an empty matrix to a r×c matrix,
// or checks that a non-empty matrix is r×c. It zeroes
// all the elements of the matrix.
func (m *Dense) reuseAsZeroed(r, c int) {
// reuseAsZeroed must be kept in sync with reuseAsNonZeroed.
if m.mat.Rows > m.capRows || m.mat.Cols > m.capCols {
// Panic as a string, not a mat.Error.
panic(badCap)
}
if r == 0 || c == 0 {
panic(ErrZeroLength)
}
if m.IsEmpty() {
m.mat = blas64.General{
Rows: r,
Cols: c,
Stride: c,
Data: useZeroed(m.mat.Data, r*c),
}
m.capRows = r
m.capCols = c
return
}
if r != m.mat.Rows || c != m.mat.Cols {
panic(ErrShape)
}
m.Zero()
}
// Zero sets all of the matrix elements to zero.
func (m *Dense) Zero() {
r := m.mat.Rows
c := m.mat.Cols
for i := 0; i < r; i++ {
zero(m.mat.Data[i*m.mat.Stride : i*m.mat.Stride+c])
}
}
// isolatedWorkspace returns a new dense matrix w with the size of a and
// returns a callback to defer which performs cleanup at the return of the call.
// This should be used when a method receiver is the same pointer as an input argument.
func (m *Dense) isolatedWorkspace(a Matrix) (w *Dense, restore func()) {
r, c := a.Dims()
if r == 0 || c == 0 {
panic(ErrZeroLength)
}
w = getDenseWorkspace(r, c, false)
return w, func() {
m.Copy(w)
putDenseWorkspace(w)
}
}
// Reset empties the matrix so that it can be reused as the
// receiver of a dimensionally restricted operation.
//
// Reset should not be used when the matrix shares backing data.
// See the Reseter interface for more information.
func (m *Dense) Reset() {
// Row, Cols and Stride must be zeroed in unison.
m.mat.Rows, m.mat.Cols, m.mat.Stride = 0, 0, 0
m.capRows, m.capCols = 0, 0
m.mat.Data = m.mat.Data[:0]
}
// IsEmpty returns whether the receiver is empty. Empty matrices can be the
// receiver for size-restricted operations. The receiver can be emptied using
// Reset.
func (m *Dense) IsEmpty() bool {
// It must be the case that m.Dims() returns
// zeros in this case. See comment in Reset().
return m.mat.Stride == 0
}
// asTriDense returns a TriDense with the given size and side. The backing data
// of the TriDense is the same as the receiver.
func (m *Dense) asTriDense(n int, diag blas.Diag, uplo blas.Uplo) *TriDense {
return &TriDense{
mat: blas64.Triangular{
N: n,
Stride: m.mat.Stride,
Data: m.mat.Data,
Uplo: uplo,
Diag: diag,
},
cap: n,
}
}
// DenseCopyOf returns a newly allocated copy of the elements of a.
func DenseCopyOf(a Matrix) *Dense {
d := &Dense{}
d.CloneFrom(a)
return d
}
// SetRawMatrix sets the underlying blas64.General used by the receiver.
// Changes to elements in the receiver following the call will be reflected
// in b.
func (m *Dense) SetRawMatrix(b blas64.General) {
m.capRows, m.capCols = b.Rows, b.Cols
m.mat = b
}
// RawMatrix returns the underlying blas64.General used by the receiver.
// Changes to elements in the receiver following the call will be reflected
// in returned blas64.General.
func (m *Dense) RawMatrix() blas64.General { return m.mat }
// Dims returns the number of rows and columns in the matrix.
func (m *Dense) Dims() (r, c int) { return m.mat.Rows, m.mat.Cols }
// Caps returns the number of rows and columns in the backing matrix.
func (m *Dense) Caps() (r, c int) { return m.capRows, m.capCols }
// T performs an implicit transpose by returning the receiver inside a Transpose.
func (m *Dense) T() Matrix {
return Transpose{m}
}
// ColView returns a Vector reflecting the column j, backed by the matrix data.
//
// See ColViewer for more information.
func (m *Dense) ColView(j int) Vector {
var v VecDense
v.ColViewOf(m, j)
return &v
}
// SetCol sets the values in the specified column of the matrix to the values
// in src. len(src) must equal the number of rows in the receiver.
func (m *Dense) SetCol(j int, src []float64) {
if j >= m.mat.Cols || j < 0 {
panic(ErrColAccess)
}
if len(src) != m.mat.Rows {
panic(ErrColLength)
}
blas64.Copy(
blas64.Vector{N: m.mat.Rows, Inc: 1, Data: src},
blas64.Vector{N: m.mat.Rows, Inc: m.mat.Stride, Data: m.mat.Data[j:]},
)
}
// SetRow sets the values in the specified rows of the matrix to the values
// in src. len(src) must equal the number of columns in the receiver.
func (m *Dense) SetRow(i int, src []float64) {
if i >= m.mat.Rows || i < 0 {
panic(ErrRowAccess)
}
if len(src) != m.mat.Cols {
panic(ErrRowLength)
}
copy(m.rawRowView(i), src)
}
// RowView returns row i of the matrix data represented as a column vector,
// backed by the matrix data.
//
// See RowViewer for more information.
func (m *Dense) RowView(i int) Vector {
var v VecDense
v.RowViewOf(m, i)
return &v
}
// RawRowView returns a slice backed by the same array as backing the
// receiver.
func (m *Dense) RawRowView(i int) []float64 {
if i >= m.mat.Rows || i < 0 {
panic(ErrRowAccess)
}
return m.rawRowView(i)
}
func (m *Dense) rawRowView(i int) []float64 {
return m.mat.Data[i*m.mat.Stride : i*m.mat.Stride+m.mat.Cols]
}
// DiagView returns the diagonal as a matrix backed by the original data.
func (m *Dense) DiagView() Diagonal {
n := min(m.mat.Rows, m.mat.Cols)
return &DiagDense{
mat: blas64.Vector{
N: n,
Inc: m.mat.Stride + 1,
Data: m.mat.Data[:(n-1)*m.mat.Stride+n],
},
}
}
// Slice returns a new Matrix that shares backing data with the receiver.
// The returned matrix starts at {i,j} of the receiver and extends k-i rows
// and l-j columns. The final row in the resulting matrix is k-1 and the
// final column is l-1.
// Slice panics with ErrIndexOutOfRange if the slice is outside the capacity
// of the receiver.
func (m *Dense) Slice(i, k, j, l int) Matrix {
return m.slice(i, k, j, l)
}
func (m *Dense) slice(i, k, j, l int) *Dense {
mr, mc := m.Caps()
if i < 0 || mr <= i || j < 0 || mc <= j || k < i || mr < k || l < j || mc < l {
if i == k || j == l {
panic(ErrZeroLength)
}
panic(ErrIndexOutOfRange)
}
t := *m
t.mat.Data = t.mat.Data[i*t.mat.Stride+j : (k-1)*t.mat.Stride+l]
t.mat.Rows = k - i
t.mat.Cols = l - j
t.capRows -= i
t.capCols -= j
return &t
}
// Grow returns the receiver expanded by r rows and c columns. If the dimensions
// of the expanded matrix are outside the capacities of the receiver a new
// allocation is made, otherwise not. Note the receiver itself is not modified
// during the call to Grow.
func (m *Dense) Grow(r, c int) Matrix {
if r < 0 || c < 0 {
panic(ErrIndexOutOfRange)
}
if r == 0 && c == 0 {
return m
}
r += m.mat.Rows
c += m.mat.Cols
var t Dense
switch {
case m.mat.Rows == 0 || m.mat.Cols == 0:
t.mat = blas64.General{
Rows: r,
Cols: c,
Stride: c,
// We zero because we don't know how the matrix will be used.
// In other places, the mat is immediately filled with a result;
// this is not the case here.
Data: useZeroed(m.mat.Data, r*c),
}
case r > m.capRows || c > m.capCols:
cr := max(r, m.capRows)
cc := max(c, m.capCols)
t.mat = blas64.General{
Rows: r,
Cols: c,
Stride: cc,
Data: make([]float64, cr*cc),
}
t.capRows = cr
t.capCols = cc
// Copy the complete matrix over to the new matrix.
// Including elements not currently visible. Use a temporary structure
// to avoid modifying the receiver.
var tmp Dense
tmp.mat = blas64.General{
Rows: m.mat.Rows,
Cols: m.mat.Cols,
Stride: m.mat.Stride,
Data: m.mat.Data,
}
tmp.capRows = m.capRows
tmp.capCols = m.capCols
t.Copy(&tmp)
return &t
default:
t.mat = blas64.General{
Data: m.mat.Data[:(r-1)*m.mat.Stride+c],
Rows: r,
Cols: c,
Stride: m.mat.Stride,
}
}
t.capRows = r
t.capCols = c
return &t
}
// CloneFrom makes a copy of a into the receiver, overwriting the previous value of
// the receiver. The clone from operation does not make any restriction on shape and
// will not cause shadowing.
//
// See the ClonerFrom interface for more information.
func (m *Dense) CloneFrom(a Matrix) {
r, c := a.Dims()
mat := blas64.General{
Rows: r,
Cols: c,
Stride: c,
}
m.capRows, m.capCols = r, c
aU, trans := untransposeExtract(a)
switch aU := aU.(type) {
case *Dense:
amat := aU.mat
mat.Data = make([]float64, r*c)
if trans {
for i := 0; i < r; i++ {
blas64.Copy(blas64.Vector{N: c, Inc: amat.Stride, Data: amat.Data[i : i+(c-1)*amat.Stride+1]},
blas64.Vector{N: c, Inc: 1, Data: mat.Data[i*c : (i+1)*c]})
}
} else {
for i := 0; i < r; i++ {
copy(mat.Data[i*c:(i+1)*c], amat.Data[i*amat.Stride:i*amat.Stride+c])
}
}
case *VecDense:
amat := aU.mat
mat.Data = make([]float64, aU.mat.N)
blas64.Copy(blas64.Vector{N: aU.mat.N, Inc: amat.Inc, Data: amat.Data},
blas64.Vector{N: aU.mat.N, Inc: 1, Data: mat.Data})
default:
mat.Data = make([]float64, r*c)
w := *m
w.mat = mat
for i := 0; i < r; i++ {
for j := 0; j < c; j++ {
w.set(i, j, a.At(i, j))
}
}
*m = w
return
}
m.mat = mat
}
// Copy makes a copy of elements of a into the receiver. It is similar to the
// built-in copy; it copies as much as the overlap between the two matrices and
// returns the number of rows and columns it copied. If a aliases the receiver
// and is a transposed Dense or VecDense, with a non-unitary increment, Copy will
// panic.
//
// See the Copier interface for more information.
func (m *Dense) Copy(a Matrix) (r, c int) {
r, c = a.Dims()
if a == m {
return r, c
}
r = min(r, m.mat.Rows)
c = min(c, m.mat.Cols)
if r == 0 || c == 0 {
return 0, 0
}
aU, trans := untransposeExtract(a)
switch aU := aU.(type) {
case *Dense:
amat := aU.mat
if trans {
if amat.Stride != 1 {
m.checkOverlap(amat)
}
for i := 0; i < r; i++ {
blas64.Copy(blas64.Vector{N: c, Inc: amat.Stride, Data: amat.Data[i : i+(c-1)*amat.Stride+1]},
blas64.Vector{N: c, Inc: 1, Data: m.mat.Data[i*m.mat.Stride : i*m.mat.Stride+c]})
}
} else {
switch o := offset(m.mat.Data, amat.Data); {
case o < 0:
for i := r - 1; i >= 0; i-- {
copy(m.mat.Data[i*m.mat.Stride:i*m.mat.Stride+c], amat.Data[i*amat.Stride:i*amat.Stride+c])
}
case o > 0:
for i := 0; i < r; i++ {
copy(m.mat.Data[i*m.mat.Stride:i*m.mat.Stride+c], amat.Data[i*amat.Stride:i*amat.Stride+c])
}
default:
// Nothing to do.
}
}
case *VecDense:
var n, stride int
amat := aU.mat
if trans {
if amat.Inc != 1 {
m.checkOverlap(aU.asGeneral())
}
n = c
stride = 1
} else {
n = r
stride = m.mat.Stride
}
if amat.Inc == 1 && stride == 1 {
copy(m.mat.Data, amat.Data[:n])
break
}
switch o := offset(m.mat.Data, amat.Data); {
case o < 0:
blas64.Copy(blas64.Vector{N: n, Inc: -amat.Inc, Data: amat.Data},
blas64.Vector{N: n, Inc: -stride, Data: m.mat.Data})
case o > 0:
blas64.Copy(blas64.Vector{N: n, Inc: amat.Inc, Data: amat.Data},
blas64.Vector{N: n, Inc: stride, Data: m.mat.Data})
default:
// Nothing to do.
}
default:
m.checkOverlapMatrix(aU)
for i := 0; i < r; i++ {
for j := 0; j < c; j++ {
m.set(i, j, a.At(i, j))
}
}
}
return r, c
}
// Stack appends the rows of b onto the rows of a, placing the result into the
// receiver with b placed in the greater indexed rows. Stack will panic if the
// two input matrices do not have the same number of columns or the constructed
// stacked matrix is not the same shape as the receiver.
func (m *Dense) Stack(a, b Matrix) {
ar, ac := a.Dims()
br, bc := b.Dims()
if ac != bc || m == a || m == b {
panic(ErrShape)
}
m.reuseAsNonZeroed(ar+br, ac)
m.Copy(a)
w := m.slice(ar, ar+br, 0, bc)
w.Copy(b)
}
// Augment creates the augmented matrix of a and b, where b is placed in the
// greater indexed columns. Augment will panic if the two input matrices do
// not have the same number of rows or the constructed augmented matrix is
// not the same shape as the receiver.
func (m *Dense) Augment(a, b Matrix) {
ar, ac := a.Dims()
br, bc := b.Dims()
if ar != br || m == a || m == b {
panic(ErrShape)
}
m.reuseAsNonZeroed(ar, ac+bc)
m.Copy(a)
w := m.slice(0, br, ac, ac+bc)
w.Copy(b)
}
// Trace returns the trace of the matrix.
//
// Trace will panic with ErrSquare if the matrix is not square and with
// ErrZeroLength if the matrix has zero size.
func (m *Dense) Trace() float64 {
r, c := m.Dims()
if r != c {
panic(ErrSquare)
}
if m.IsEmpty() {
panic(ErrZeroLength)
}
// TODO(btracey): could use internal asm sum routine.
var v float64
for i := 0; i < m.mat.Rows; i++ {
v += m.mat.Data[i*m.mat.Stride+i]
}
return v
}
// Norm returns the specified norm of the receiver. Valid norms are:
//
// 1 - The maximum absolute column sum
// 2 - The Frobenius norm, the square root of the sum of the squares of the elements
// Inf - The maximum absolute row sum
//
// Norm will panic with ErrNormOrder if an illegal norm is specified and with
// ErrShape if the matrix has zero size.
func (m *Dense) Norm(norm float64) float64 {
if m.IsEmpty() {
panic(ErrZeroLength)
}
lnorm := normLapack(norm, false)
if lnorm == lapack.MaxColumnSum {
work := getFloat64s(m.mat.Cols, false)
defer putFloat64s(work)
return lapack64.Lange(lnorm, m.mat, work)
}
return lapack64.Lange(lnorm, m.mat, nil)
}
// Permutation constructs an n×n permutation matrix P from the given
// row permutation such that the nonzero entries are P[i,p[i]] = 1.
func (m *Dense) Permutation(n int, p []int) {
if len(p) != n {
panic(badSliceLength)
}
m.reuseAsZeroed(n, n)
for i, v := range p {
if v < 0 || v >= n {
panic(ErrRowAccess)
}
m.mat.Data[i*m.mat.Stride+v] = 1
}
}
// PermuteRows rearranges the rows of the m×n matrix A in the receiver as
// specified by the permutation p[0],p[1],...,p[m-1] of the integers 0,...,m-1.
//
// If inverse is false, the given permutation is applied:
//
// A[p[i],0:n] is moved to A[i,0:n] for i=0,1,...,m-1.
//
// If inverse is true, the inverse permutation is applied:
//
// A[i,0:n] is moved to A[p[i],0:n] for i=0,1,...,m-1.
//
// p must have length m, otherwise PermuteRows will panic.
func (m *Dense) PermuteRows(p []int, inverse bool) {
r, _ := m.Dims()
if len(p) != r {
panic(badSliceLength)
}
lapack64.Lapmr(!inverse, m.mat, p)
}
// PermuteCols rearranges the columns of the m×n matrix A in the reciever as
// specified by the permutation p[0],p[1],...,p[n-1] of the integers 0,...,n-1.
//
// If inverse is false, the given permutation is applied:
//
// A[0:m,p[j]] is moved to A[0:m,j] for j = 0, 1, ..., n-1.
//
// If inverse is true, the inverse permutation is applied:
//
// A[0:m,j] is moved to A[0:m,p[j]] for j = 0, 1, ..., n-1.
//
// p must have length n, otherwise PermuteCols will panic.
func (m *Dense) PermuteCols(p []int, inverse bool) {
_, c := m.Dims()
if len(p) != c {
panic(badSliceLength)
}
lapack64.Lapmt(!inverse, m.mat, p)
}
|