File: dense_example_test.go

package info (click to toggle)
golang-gonum-v1-gonum 0.15.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,792 kB
  • sloc: asm: 6,252; fortran: 5,271; sh: 377; ruby: 211; makefile: 98
file content (269 lines) | stat: -rw-r--r-- 5,639 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package mat_test

import (
	"fmt"
	"log"

	"gonum.org/v1/gonum/mat"
)

func ExampleDense_Add() {
	// Initialize two matrices, a and b.
	a := mat.NewDense(2, 2, []float64{
		1, 0,
		1, 0,
	})
	b := mat.NewDense(2, 2, []float64{
		0, 1,
		0, 1,
	})

	// Add a and b, placing the result into c.
	// Notice that the size is automatically adjusted
	// when the receiver is empty (has zero size).
	var c mat.Dense
	c.Add(a, b)

	// Print the result using the formatter.
	fc := mat.Formatted(&c, mat.Prefix("    "), mat.Squeeze())
	fmt.Printf("c = %v", fc)

	// Output:
	//
	// c = ⎡1  1⎤
	//     ⎣1  1⎦
}

func ExampleDense_Sub() {
	// Initialize two matrices, a and b.
	a := mat.NewDense(2, 2, []float64{
		1, 1,
		1, 1,
	})
	b := mat.NewDense(2, 2, []float64{
		1, 0,
		0, 1,
	})

	// Subtract b from a, placing the result into a.
	a.Sub(a, b)

	// Print the result using the formatter.
	fa := mat.Formatted(a, mat.Prefix("    "), mat.Squeeze())
	fmt.Printf("a = %v", fa)

	// Output:
	//
	// a = ⎡0  1⎤
	//     ⎣1  0⎦
}

func ExampleDense_MulElem() {
	// Initialize two matrices, a and b.
	a := mat.NewDense(2, 2, []float64{
		1, 2,
		3, 4,
	})
	b := mat.NewDense(2, 2, []float64{
		1, 2,
		3, 4,
	})

	// Multiply the elements of a and b, placing the result into a.
	a.MulElem(a, b)

	// Print the result using the formatter.
	fa := mat.Formatted(a, mat.Prefix("    "), mat.Squeeze())
	fmt.Printf("a = %v", fa)

	// Output:
	//
	// a = ⎡1   4⎤
	//     ⎣9  16⎦
}

func ExampleDense_DivElem() {
	// Initialize two matrices, a and b.
	a := mat.NewDense(2, 2, []float64{
		5, 10,
		15, 20,
	})
	b := mat.NewDense(2, 2, []float64{
		5, 5,
		5, 5,
	})

	// Divide the elements of a by b, placing the result into a.
	a.DivElem(a, b)

	// Print the result using the formatter.
	fa := mat.Formatted(a, mat.Prefix("    "), mat.Squeeze())
	fmt.Printf("a = %v", fa)

	// Output:
	//
	// a = ⎡1  2⎤
	//     ⎣3  4⎦
}

func ExampleDense_Inverse() {
	// Initialize a matrix A.
	a := mat.NewDense(2, 2, []float64{
		2, 1,
		6, 4,
	})

	// Compute the inverse of A.
	var aInv mat.Dense
	err := aInv.Inverse(a)
	if err != nil {
		log.Fatalf("A is not invertible: %v", err)
	}

	// Print the result using the formatter.
	fa := mat.Formatted(&aInv, mat.Prefix("       "), mat.Squeeze())
	fmt.Printf("aInv = %.2g\n\n", fa)

	// Confirm that A * A^-1 = I.
	var I mat.Dense
	I.Mul(a, &aInv)
	fi := mat.Formatted(&I, mat.Prefix("    "), mat.Squeeze())
	fmt.Printf("I = %v\n\n", fi)

	// The Inverse operation, however, should typically be avoided. If the
	// goal is to solve a linear system
	//  A * X = B,
	// then the inverse is not needed and computing the solution as
	// X = A^{-1} * B is slower and has worse stability properties than
	// solving the original problem. In this case, the SolveVec method of
	// VecDense (if B is a vector) or Solve method of Dense (if B is a
	// matrix) should be used instead of computing the Inverse of A.
	b := mat.NewDense(2, 2, []float64{
		2, 3,
		1, 2,
	})
	var x mat.Dense
	err = x.Solve(a, b)
	if err != nil {
		log.Fatalf("no solution: %v", err)
	}

	// Print the result using the formatter.
	fx := mat.Formatted(&x, mat.Prefix("    "), mat.Squeeze())
	fmt.Printf("x = %.1f", fx)

	// Output:
	//
	// aInv = ⎡ 2  -0.5⎤
	//        ⎣-3     1⎦
	//
	// I = ⎡1  0⎤
	//     ⎣0  1⎦
	//
	// x = ⎡ 3.5   5.0⎤
	//     ⎣-5.0  -7.0⎦
}

func ExampleDense_Mul() {
	// Initialize two matrices, a and b.
	a := mat.NewDense(2, 2, []float64{
		4, 0,
		0, 4,
	})
	b := mat.NewDense(2, 3, []float64{
		4, 0, 0,
		0, 0, 4,
	})

	// Take the matrix product of a and b and place the result in c.
	var c mat.Dense
	c.Mul(a, b)

	// Print the result using the formatter.
	fc := mat.Formatted(&c, mat.Prefix("    "), mat.Squeeze())
	fmt.Printf("c = %v", fc)

	// Output:
	//
	// c = ⎡16  0   0⎤
	//     ⎣ 0  0  16⎦
}

func ExampleDense_Exp() {
	// Initialize a matrix a with some data.
	a := mat.NewDense(2, 2, []float64{
		1, 0,
		0, 1,
	})

	// Take the exponential of the matrix and place the result in m.
	var m mat.Dense
	m.Exp(a)

	// Print the result using the formatter.
	fm := mat.Formatted(&m, mat.Prefix("    "), mat.Squeeze())
	fmt.Printf("m = %4.2f", fm)

	// Output:
	//
	// m = ⎡2.72  0.00⎤
	//     ⎣0.00  2.72⎦
}

func ExampleDense_Pow() {
	// Initialize a matrix with some data.
	a := mat.NewDense(2, 2, []float64{
		4, 4,
		4, 4,
	})

	// Take the second power of matrix a and place the result in m.
	var m mat.Dense
	m.Pow(a, 2)

	// Print the result using the formatter.
	fm := mat.Formatted(&m, mat.Prefix("    "), mat.Squeeze())
	fmt.Printf("m = %v\n\n", fm)

	// Take the zeroth power of matrix a and place the result in n.
	// We expect an identity matrix of the same size as matrix a.
	var n mat.Dense
	n.Pow(a, 0)

	// Print the result using the formatter.
	fn := mat.Formatted(&n, mat.Prefix("    "), mat.Squeeze())
	fmt.Printf("n = %v", fn)

	// Output:
	//
	// m = ⎡32  32⎤
	//     ⎣32  32⎦
	//
	// n = ⎡1  0⎤
	//     ⎣0  1⎦
}

func ExampleDense_Scale() {
	// Initialize a matrix with some data.
	a := mat.NewDense(2, 2, []float64{
		4, 4,
		4, 4,
	})

	// Scale the matrix by a factor of 0.25 and place the result in m.
	var m mat.Dense
	m.Scale(0.25, a)

	// Print the result using the formatter.
	fm := mat.Formatted(&m, mat.Prefix("    "), mat.Squeeze())
	fmt.Printf("m = %4.3f", fm)

	// Output:
	//
	// m = ⎡1.000  1.000⎤
	//     ⎣1.000  1.000⎦
}