1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/lapack"
"gonum.org/v1/gonum/lapack/lapack64"
)
// GSVDKind specifies the treatment of singular vectors during a GSVD
// factorization.
type GSVDKind int
const (
// GSVDNone specifies that no singular vectors should be computed during
// the decomposition.
GSVDNone GSVDKind = 0
// GSVDU specifies that the U singular vectors should be computed during
// the decomposition.
GSVDU GSVDKind = 1 << iota
// GSVDV specifies that the V singular vectors should be computed during
// the decomposition.
GSVDV
// GSVDQ specifies that the Q singular vectors should be computed during
// the decomposition.
GSVDQ
// GSVDAll is a convenience value for computing all of the singular vectors.
GSVDAll = GSVDU | GSVDV | GSVDQ
)
// GSVD is a type for creating and using the Generalized Singular Value Decomposition
// (GSVD) of a matrix.
//
// The factorization is a linear transformation of the data sets from the given
// variable×sample spaces to reduced and diagonalized "eigenvariable"×"eigensample"
// spaces.
type GSVD struct {
kind GSVDKind
r, p, c, k, l int
s1, s2 []float64
a, b, u, v, q blas64.General
work []float64
iwork []int
}
// succFact returns whether the receiver contains a successful factorization.
func (gsvd *GSVD) succFact() bool {
return gsvd.r != 0
}
// Factorize computes the generalized singular value decomposition (GSVD) of the input
// the r×c matrix A and the p×c matrix B. The singular values of A and B are computed
// in all cases, while the singular vectors are optionally computed depending on the
// input kind.
//
// The full singular value decomposition (kind == GSVDAll) deconstructs A and B as
//
// A = U * Σ₁ * [ 0 R ] * Qᵀ
//
// B = V * Σ₂ * [ 0 R ] * Qᵀ
//
// where Σ₁ and Σ₂ are r×(k+l) and p×(k+l) diagonal matrices of singular values, and
// U, V and Q are r×r, p×p and c×c orthogonal matrices of singular vectors. k+l is the
// effective numerical rank of the matrix [ Aᵀ Bᵀ ]ᵀ.
//
// It is frequently not necessary to compute the full GSVD. Computation time and
// storage costs can be reduced using the appropriate kind. Either only the singular
// values can be computed (kind == SVDNone), or in conjunction with specific singular
// vectors (kind bit set according to GSVDU, GSVDV and GSVDQ).
//
// Factorize returns whether the decomposition succeeded. If the decomposition
// failed, routines that require a successful factorization will panic.
func (gsvd *GSVD) Factorize(a, b Matrix, kind GSVDKind) (ok bool) {
// kill the previous decomposition
gsvd.r = 0
gsvd.kind = 0
r, c := a.Dims()
gsvd.r, gsvd.c = r, c
p, c := b.Dims()
gsvd.p = p
if gsvd.c != c {
panic(ErrShape)
}
var jobU, jobV, jobQ lapack.GSVDJob
switch {
default:
panic("gsvd: bad input kind")
case kind == GSVDNone:
jobU = lapack.GSVDNone
jobV = lapack.GSVDNone
jobQ = lapack.GSVDNone
case GSVDAll&kind != 0:
if GSVDU&kind != 0 {
jobU = lapack.GSVDU
gsvd.u = blas64.General{
Rows: r,
Cols: r,
Stride: r,
Data: use(gsvd.u.Data, r*r),
}
}
if GSVDV&kind != 0 {
jobV = lapack.GSVDV
gsvd.v = blas64.General{
Rows: p,
Cols: p,
Stride: p,
Data: use(gsvd.v.Data, p*p),
}
}
if GSVDQ&kind != 0 {
jobQ = lapack.GSVDQ
gsvd.q = blas64.General{
Rows: c,
Cols: c,
Stride: c,
Data: use(gsvd.q.Data, c*c),
}
}
}
// A and B are destroyed on call, so copy the matrices.
aCopy := DenseCopyOf(a)
bCopy := DenseCopyOf(b)
gsvd.s1 = use(gsvd.s1, c)
gsvd.s2 = use(gsvd.s2, c)
gsvd.iwork = useInt(gsvd.iwork, c)
gsvd.work = use(gsvd.work, 1)
lapack64.Ggsvd3(jobU, jobV, jobQ, aCopy.mat, bCopy.mat, gsvd.s1, gsvd.s2, gsvd.u, gsvd.v, gsvd.q, gsvd.work, -1, gsvd.iwork)
gsvd.work = use(gsvd.work, int(gsvd.work[0]))
gsvd.k, gsvd.l, ok = lapack64.Ggsvd3(jobU, jobV, jobQ, aCopy.mat, bCopy.mat, gsvd.s1, gsvd.s2, gsvd.u, gsvd.v, gsvd.q, gsvd.work, len(gsvd.work), gsvd.iwork)
if ok {
gsvd.a = aCopy.mat
gsvd.b = bCopy.mat
gsvd.kind = kind
}
return ok
}
// Kind returns the GSVDKind of the decomposition. If no decomposition has been
// computed, Kind returns -1.
func (gsvd *GSVD) Kind() GSVDKind {
if !gsvd.succFact() {
return -1
}
return gsvd.kind
}
// Rank returns the k and l terms of the rank of [ Aᵀ Bᵀ ]ᵀ.
func (gsvd *GSVD) Rank() (k, l int) {
return gsvd.k, gsvd.l
}
// GeneralizedValues returns the generalized singular values of the factorized matrices.
// If the input slice is non-nil, the values will be stored in-place into the slice.
// In this case, the slice must have length min(r,c)-k, and GeneralizedValues will
// panic with ErrSliceLengthMismatch otherwise. If the input slice is nil,
// a new slice of the appropriate length will be allocated and returned.
//
// GeneralizedValues will panic if the receiver does not contain a successful factorization.
func (gsvd *GSVD) GeneralizedValues(v []float64) []float64 {
if !gsvd.succFact() {
panic(badFact)
}
r := gsvd.r
c := gsvd.c
k := gsvd.k
d := min(r, c)
if v == nil {
v = make([]float64, d-k)
}
if len(v) != d-k {
panic(ErrSliceLengthMismatch)
}
floats.DivTo(v, gsvd.s1[k:d], gsvd.s2[k:d])
return v
}
// ValuesA returns the singular values of the factorized A matrix.
// If the input slice is non-nil, the values will be stored in-place into the slice.
// In this case, the slice must have length min(r,c)-k, and ValuesA will panic with
// ErrSliceLengthMismatch otherwise. If the input slice is nil,
// a new slice of the appropriate length will be allocated and returned.
//
// ValuesA will panic if the receiver does not contain a successful factorization.
func (gsvd *GSVD) ValuesA(s []float64) []float64 {
if !gsvd.succFact() {
panic(badFact)
}
r := gsvd.r
c := gsvd.c
k := gsvd.k
d := min(r, c)
if s == nil {
s = make([]float64, d-k)
}
if len(s) != d-k {
panic(ErrSliceLengthMismatch)
}
copy(s, gsvd.s1[k:min(r, c)])
return s
}
// ValuesB returns the singular values of the factorized B matrix.
// If the input slice is non-nil, the values will be stored in-place into the slice.
// In this case, the slice must have length min(r,c)-k, and ValuesB will panic with
// ErrSliceLengthMismatch otherwise. If the input slice is nil,
// a new slice of the appropriate length will be allocated and returned.
//
// ValuesB will panic if the receiver does not contain a successful factorization.
func (gsvd *GSVD) ValuesB(s []float64) []float64 {
if !gsvd.succFact() {
panic(badFact)
}
r := gsvd.r
c := gsvd.c
k := gsvd.k
d := min(r, c)
if s == nil {
s = make([]float64, d-k)
}
if len(s) != d-k {
panic(ErrSliceLengthMismatch)
}
copy(s, gsvd.s2[k:d])
return s
}
// ZeroRTo extracts the matrix [ 0 R ] from the singular value decomposition,
// storing the result into dst. [ 0 R ] is of size (k+l)×c.
//
// If dst is empty, ZeroRTo will resize dst to be (k+l)×c. When dst is
// non-empty, ZeroRTo will panic if dst is not (k+l)×c. ZeroRTo will also panic
// if the receiver does not contain a successful factorization.
func (gsvd *GSVD) ZeroRTo(dst *Dense) {
if !gsvd.succFact() {
panic(badFact)
}
r := gsvd.r
c := gsvd.c
k := gsvd.k
l := gsvd.l
h := min(k+l, r)
if dst.IsEmpty() {
dst.ReuseAs(k+l, c)
} else {
r2, c2 := dst.Dims()
if r2 != k+l || c != c2 {
panic(ErrShape)
}
dst.Zero()
}
a := Dense{
mat: gsvd.a,
capRows: r,
capCols: c,
}
dst.slice(0, h, c-k-l, c).Copy(a.Slice(0, h, c-k-l, c))
if r < k+l {
b := Dense{
mat: gsvd.b,
capRows: gsvd.p,
capCols: c,
}
dst.slice(r, k+l, c+r-k-l, c).Copy(b.Slice(r-k, l, c+r-k-l, c))
}
}
// SigmaATo extracts the matrix Σ₁ from the singular value decomposition, storing
// the result into dst. Σ₁ is size r×(k+l).
//
// If dst is empty, SigmaATo will resize dst to be r×(k+l). When dst is
// non-empty, SigmATo will panic if dst is not r×(k+l). SigmaATo will also
// panic if the receiver does not contain a successful factorization.
func (gsvd *GSVD) SigmaATo(dst *Dense) {
if !gsvd.succFact() {
panic(badFact)
}
r := gsvd.r
k := gsvd.k
l := gsvd.l
if dst.IsEmpty() {
dst.ReuseAs(r, k+l)
} else {
r2, c := dst.Dims()
if r2 != r || c != k+l {
panic(ErrShape)
}
dst.Zero()
}
for i := 0; i < k; i++ {
dst.set(i, i, 1)
}
for i := k; i < min(r, k+l); i++ {
dst.set(i, i, gsvd.s1[i])
}
}
// SigmaBTo extracts the matrix Σ₂ from the singular value decomposition, storing
// the result into dst. Σ₂ is size p×(k+l).
//
// If dst is empty, SigmaBTo will resize dst to be p×(k+l). When dst is
// non-empty, SigmBTo will panic if dst is not p×(k+l). SigmaBTo will also
// panic if the receiver does not contain a successful factorization.
func (gsvd *GSVD) SigmaBTo(dst *Dense) {
if !gsvd.succFact() {
panic(badFact)
}
r := gsvd.r
p := gsvd.p
k := gsvd.k
l := gsvd.l
if dst.IsEmpty() {
dst.ReuseAs(p, k+l)
} else {
r, c := dst.Dims()
if r != p || c != k+l {
panic(ErrShape)
}
dst.Zero()
}
for i := 0; i < min(l, r-k); i++ {
dst.set(i, i+k, gsvd.s2[k+i])
}
for i := r - k; i < l; i++ {
dst.set(i, i+k, 1)
}
}
// UTo extracts the matrix U from the singular value decomposition, storing
// the result into dst. U is size r×r.
//
// If dst is empty, UTo will resize dst to be r×r. When dst is
// non-empty, UTo will panic if dst is not r×r. UTo will also
// panic if the receiver does not contain a successful factorization.
func (gsvd *GSVD) UTo(dst *Dense) {
if !gsvd.succFact() {
panic(badFact)
}
if gsvd.kind&GSVDU == 0 {
panic("mat: improper GSVD kind")
}
r := gsvd.u.Rows
c := gsvd.u.Cols
if dst.IsEmpty() {
dst.ReuseAs(r, c)
} else {
r2, c2 := dst.Dims()
if r != r2 || c != c2 {
panic(ErrShape)
}
}
tmp := &Dense{
mat: gsvd.u,
capRows: r,
capCols: c,
}
dst.Copy(tmp)
}
// VTo extracts the matrix V from the singular value decomposition, storing
// the result into dst. V is size p×p.
//
// If dst is empty, VTo will resize dst to be p×p. When dst is
// non-empty, VTo will panic if dst is not p×p. VTo will also
// panic if the receiver does not contain a successful factorization.
func (gsvd *GSVD) VTo(dst *Dense) {
if !gsvd.succFact() {
panic(badFact)
}
if gsvd.kind&GSVDV == 0 {
panic("mat: improper GSVD kind")
}
r := gsvd.v.Rows
c := gsvd.v.Cols
if dst.IsEmpty() {
dst.ReuseAs(r, c)
} else {
r2, c2 := dst.Dims()
if r != r2 || c != c2 {
panic(ErrShape)
}
}
tmp := &Dense{
mat: gsvd.v,
capRows: r,
capCols: c,
}
dst.Copy(tmp)
}
// QTo extracts the matrix Q from the singular value decomposition, storing
// the result into dst. Q is size c×c.
//
// If dst is empty, QTo will resize dst to be c×c. When dst is
// non-empty, QTo will panic if dst is not c×c. QTo will also
// panic if the receiver does not contain a successful factorization.
func (gsvd *GSVD) QTo(dst *Dense) {
if !gsvd.succFact() {
panic(badFact)
}
if gsvd.kind&GSVDQ == 0 {
panic("mat: improper GSVD kind")
}
r := gsvd.q.Rows
c := gsvd.q.Cols
if dst.IsEmpty() {
dst.ReuseAs(r, c)
} else {
r2, c2 := dst.Dims()
if r != r2 || c != c2 {
panic(ErrShape)
}
}
tmp := &Dense{
mat: gsvd.q,
capRows: r,
capCols: c,
}
dst.Copy(tmp)
}
|