1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"testing"
"golang.org/x/exp/rand"
)
func TestLQ(t *testing.T) {
t.Parallel()
const tol = 1e-14
rnd := rand.New(rand.NewSource(1))
for cas, test := range []struct {
m, n int
}{
{5, 5},
{5, 10},
} {
m := test.m
n := test.n
a := NewDense(m, n, nil)
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
a.Set(i, j, rnd.NormFloat64())
}
}
var want Dense
want.CloneFrom(a)
var lq LQ
lq.Factorize(a)
if !EqualApprox(a, &lq, tol) {
t.Errorf("case %d: A and LQ are not equal", cas)
}
var l, q Dense
lq.QTo(&q)
if !isOrthonormal(&q, tol) {
t.Errorf("Q is not orthonormal: m = %v, n = %v", m, n)
}
lq.LTo(&l)
var got Dense
got.Mul(&l, &q)
if !EqualApprox(&got, &want, tol) {
t.Errorf("LQ does not equal original matrix. \nWant: %v\nGot: %v", want, got)
}
}
}
func TestLQSolveTo(t *testing.T) {
t.Parallel()
rnd := rand.New(rand.NewSource(1))
for _, trans := range []bool{false, true} {
for _, test := range []struct {
m, n, bc int
}{
{5, 5, 1},
{5, 10, 1},
{5, 5, 3},
{5, 10, 3},
} {
m := test.m
n := test.n
bc := test.bc
a := NewDense(m, n, nil)
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
a.Set(i, j, rnd.Float64())
}
}
br := m
if trans {
br = n
}
b := NewDense(br, bc, nil)
for i := 0; i < br; i++ {
for j := 0; j < bc; j++ {
b.Set(i, j, rnd.Float64())
}
}
var x Dense
lq := &LQ{}
lq.Factorize(a)
err := lq.SolveTo(&x, trans, b)
if err != nil {
t.Errorf("unexpected error from LQ solve: %v", err)
}
// Test that the normal equations hold.
// Aᵀ * A * x = Aᵀ * b if !trans
// A * Aᵀ * x = A * b if trans
var lhs Dense
var rhs Dense
if trans {
var tmp Dense
tmp.Mul(a, a.T())
lhs.Mul(&tmp, &x)
rhs.Mul(a, b)
} else {
var tmp Dense
tmp.Mul(a.T(), a)
lhs.Mul(&tmp, &x)
rhs.Mul(a.T(), b)
}
if !EqualApprox(&lhs, &rhs, 1e-10) {
t.Errorf("Normal equations do not hold.\nLHS: %v\n, RHS: %v\n", lhs, rhs)
}
}
}
// TODO(btracey): Add in testOneInput when it exists.
}
func TestLQSolveToVec(t *testing.T) {
t.Parallel()
rnd := rand.New(rand.NewSource(1))
for _, trans := range []bool{false, true} {
for _, test := range []struct {
m, n int
}{
{5, 5},
{5, 10},
} {
m := test.m
n := test.n
a := NewDense(m, n, nil)
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
a.Set(i, j, rnd.Float64())
}
}
br := m
if trans {
br = n
}
b := NewVecDense(br, nil)
for i := 0; i < br; i++ {
b.SetVec(i, rnd.Float64())
}
var x VecDense
lq := &LQ{}
lq.Factorize(a)
err := lq.SolveVecTo(&x, trans, b)
if err != nil {
t.Errorf("unexpected error from LQ solve: %v", err)
}
// Test that the normal equations hold.
// Aᵀ * A * x = Aᵀ * b if !trans
// A * Aᵀ * x = A * b if trans
var lhs Dense
var rhs Dense
if trans {
var tmp Dense
tmp.Mul(a, a.T())
lhs.Mul(&tmp, &x)
rhs.Mul(a, b)
} else {
var tmp Dense
tmp.Mul(a.T(), a)
lhs.Mul(&tmp, &x)
rhs.Mul(a.T(), b)
}
if !EqualApprox(&lhs, &rhs, 1e-10) {
t.Errorf("Normal equations do not hold.\nLHS: %v\n, RHS: %v\n", lhs, rhs)
}
}
}
// TODO(btracey): Add in testOneInput when it exists.
}
func TestLQSolveToCond(t *testing.T) {
t.Parallel()
for _, test := range []*Dense{
NewDense(2, 2, []float64{1, 0, 0, 1e-20}),
NewDense(2, 3, []float64{1, 0, 0, 0, 1e-20, 0}),
} {
m, _ := test.Dims()
var lq LQ
lq.Factorize(test)
b := NewDense(m, 2, nil)
var x Dense
if err := lq.SolveTo(&x, false, b); err == nil {
t.Error("No error for near-singular matrix in matrix solve.")
}
bvec := NewVecDense(m, nil)
var xvec VecDense
if err := lq.SolveVecTo(&xvec, false, bvec); err == nil {
t.Error("No error for near-singular matrix in matrix solve.")
}
}
}
|