1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"testing"
"golang.org/x/exp/rand"
)
func TestLU(t *testing.T) {
t.Parallel()
const tol = 1e-16
rnd := rand.New(rand.NewSource(1))
for _, n := range []int{1, 2, 3, 4, 5, 10, 11, 50} {
// Construct a random matrix A.
a := NewDense(n, n, nil)
a.Apply(func(_, _ int, _ float64) float64 { return rnd.NormFloat64() }, a)
// Compute the LU factorization of A.
var lu LU
lu.Factorize(a)
// Compare A and LU using At.
if !EqualApprox(a, &lu, tol*float64(n)) {
var diff Dense
diff.Sub(a, &lu)
t.Errorf("n=%d: A and LU not equal\ndiff=%v", n, Formatted(&diff, Prefix(" ")))
}
// Recover A using RowPivots, LTo and UTo.
var l, u TriDense
lu.LTo(&l)
lu.UTo(&u)
var got Dense
got.Mul(&l, &u)
got.PermuteRows(lu.RowPivots(nil), false)
if !EqualApprox(&got, a, tol*float64(n)) {
var diff Dense
diff.Sub(&got, a)
t.Errorf("n=%d: A and P*L*U not equal\ndiff=%v", n, Formatted(&diff, Prefix(" ")))
}
}
}
func TestLURankOne(t *testing.T) {
t.Parallel()
const tol = 1e-14
rnd := rand.New(rand.NewSource(1))
for _, n := range []int{1, 2, 3, 4, 5, 10, 50} {
// Construct a random matrix A.
a := NewDense(n, n, nil)
a.Apply(func(_, _ int, _ float64) float64 { return rnd.NormFloat64() }, a)
// Compute the LU factorization of A.
var lu LU
lu.Factorize(a)
// Apply a rank one update to A. Ensure the update magnitude is larger than
// the equal tolerance.
alpha := rnd.Float64() + 1
x := NewVecDense(n, nil)
y := NewVecDense(n, nil)
for i := 0; i < n; i++ {
x.setVec(i, rnd.Float64()+1)
y.setVec(i, rnd.Float64()+1)
}
a.RankOne(a, alpha, x, y)
// Apply the same rank one update to the LU factorization of A.
var luNew LU
luNew.RankOne(&lu, alpha, x, y)
lu.RankOne(&lu, alpha, x, y)
if !EqualApprox(&lu, a, tol*float64(n)) {
var diff Dense
diff.Sub(&lu, a)
t.Errorf("n=%d: rank one mismatch\ndiff=%v", n, Formatted(&diff, Prefix(" ")))
}
if !Equal(&lu, &luNew) {
var diff Dense
diff.Sub(&lu, &luNew)
t.Errorf("n=%d: rank one mismatch with new receiver\ndiff=%v", n, Formatted(&diff, Prefix(" ")))
}
}
}
func TestLUSolveTo(t *testing.T) {
t.Parallel()
rnd := rand.New(rand.NewSource(1))
for _, test := range []struct {
n, bc int
}{
{5, 5},
{5, 10},
{10, 5},
} {
n := test.n
bc := test.bc
a := NewDense(n, n, nil)
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
a.Set(i, j, rnd.NormFloat64())
}
}
b := NewDense(n, bc, nil)
for i := 0; i < n; i++ {
for j := 0; j < bc; j++ {
b.Set(i, j, rnd.NormFloat64())
}
}
var lu LU
lu.Factorize(a)
var x Dense
if err := lu.SolveTo(&x, false, b); err != nil {
continue
}
var got Dense
got.Mul(a, &x)
if !EqualApprox(&got, b, 1e-12) {
t.Errorf("SolveTo mismatch for non-singular matrix. n = %v, bc = %v.\nWant: %v\nGot: %v", n, bc, b, got)
}
}
// TODO(btracey): Add testOneInput test when such a function exists.
}
func TestLUSolveToCond(t *testing.T) {
t.Parallel()
for _, test := range []*Dense{
NewDense(2, 2, []float64{1, 0, 0, 1e-20}),
} {
m, _ := test.Dims()
var lu LU
lu.Factorize(test)
b := NewDense(m, 2, nil)
var x Dense
if err := lu.SolveTo(&x, false, b); err == nil {
t.Error("No error for near-singular matrix in matrix solve.")
}
bvec := NewVecDense(m, nil)
var xvec VecDense
if err := lu.SolveVecTo(&xvec, false, bvec); err == nil {
t.Error("No error for near-singular matrix in matrix solve.")
}
}
}
func TestLUSolveVecTo(t *testing.T) {
t.Parallel()
rnd := rand.New(rand.NewSource(1))
for _, n := range []int{5, 10} {
a := NewDense(n, n, nil)
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
a.Set(i, j, rnd.NormFloat64())
}
}
b := NewVecDense(n, nil)
for i := 0; i < n; i++ {
b.SetVec(i, rnd.NormFloat64())
}
var lu LU
lu.Factorize(a)
var x VecDense
if err := lu.SolveVecTo(&x, false, b); err != nil {
continue
}
var got VecDense
got.MulVec(a, &x)
if !EqualApprox(&got, b, 1e-12) {
t.Errorf("SolveTo mismatch n = %v.\nWant: %v\nGot: %v", n, b, got)
}
}
// TODO(btracey): Add testOneInput test when such a function exists.
}
|