1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
|
// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/floats/scalar"
"gonum.org/v1/gonum/lapack"
)
// Matrix is the basic matrix interface type.
type Matrix interface {
// Dims returns the dimensions of a Matrix.
Dims() (r, c int)
// At returns the value of a matrix element at row i, column j.
// It will panic if i or j are out of bounds for the matrix.
At(i, j int) float64
// T returns the transpose of the Matrix. Whether T returns a copy of the
// underlying data is implementation dependent.
// This method may be implemented using the Transpose type, which
// provides an implicit matrix transpose.
T() Matrix
}
// allMatrix represents the extra set of methods that all mat Matrix types
// should satisfy. This is used to enforce compile-time consistency between the
// Dense types, especially helpful when adding new features.
type allMatrix interface {
Reseter
IsEmpty() bool
Zero()
}
// denseMatrix represents the extra set of methods that all Dense Matrix types
// should satisfy. This is used to enforce compile-time consistency between the
// Dense types, especially helpful when adding new features.
type denseMatrix interface {
DiagView() Diagonal
Tracer
Normer
}
var (
_ Matrix = Transpose{}
_ Untransposer = Transpose{}
)
// Transpose is a type for performing an implicit matrix transpose. It implements
// the Matrix interface, returning values from the transpose of the matrix within.
type Transpose struct {
Matrix Matrix
}
// At returns the value of the element at row i and column j of the transposed
// matrix, that is, row j and column i of the Matrix field.
func (t Transpose) At(i, j int) float64 {
return t.Matrix.At(j, i)
}
// Dims returns the dimensions of the transposed matrix. The number of rows returned
// is the number of columns in the Matrix field, and the number of columns is
// the number of rows in the Matrix field.
func (t Transpose) Dims() (r, c int) {
c, r = t.Matrix.Dims()
return r, c
}
// T performs an implicit transpose by returning the Matrix field.
func (t Transpose) T() Matrix {
return t.Matrix
}
// Untranspose returns the Matrix field.
func (t Transpose) Untranspose() Matrix {
return t.Matrix
}
// Untransposer is a type that can undo an implicit transpose.
type Untransposer interface {
// Note: This interface is needed to unify all of the Transpose types. In
// the mat methods, we need to test if the Matrix has been implicitly
// transposed. If this is checked by testing for the specific Transpose type
// then the behavior will be different if the user uses T() or TTri() for a
// triangular matrix.
// Untranspose returns the underlying Matrix stored for the implicit transpose.
Untranspose() Matrix
}
// UntransposeBander is a type that can undo an implicit band transpose.
type UntransposeBander interface {
// Untranspose returns the underlying Banded stored for the implicit transpose.
UntransposeBand() Banded
}
// UntransposeTrier is a type that can undo an implicit triangular transpose.
type UntransposeTrier interface {
// Untranspose returns the underlying Triangular stored for the implicit transpose.
UntransposeTri() Triangular
}
// UntransposeTriBander is a type that can undo an implicit triangular banded
// transpose.
type UntransposeTriBander interface {
// Untranspose returns the underlying Triangular stored for the implicit transpose.
UntransposeTriBand() TriBanded
}
// Mutable is a matrix interface type that allows elements to be altered.
type Mutable interface {
// Set alters the matrix element at row i, column j to v.
// It will panic if i or j are out of bounds for the matrix.
Set(i, j int, v float64)
Matrix
}
// A RowViewer can return a Vector reflecting a row that is backed by the matrix
// data. The Vector returned will have length equal to the number of columns.
type RowViewer interface {
RowView(i int) Vector
}
// A RawRowViewer can return a slice of float64 reflecting a row that is backed by the matrix
// data.
type RawRowViewer interface {
RawRowView(i int) []float64
}
// A ColViewer can return a Vector reflecting a column that is backed by the matrix
// data. The Vector returned will have length equal to the number of rows.
type ColViewer interface {
ColView(j int) Vector
}
// A RawColViewer can return a slice of float64 reflecting a column that is backed by the matrix
// data.
type RawColViewer interface {
RawColView(j int) []float64
}
// A ClonerFrom can make a copy of a into the receiver, overwriting the previous value of the
// receiver. The clone operation does not make any restriction on shape and will not cause
// shadowing.
type ClonerFrom interface {
CloneFrom(a Matrix)
}
// A Reseter can reset the matrix so that it can be reused as the receiver of a dimensionally
// restricted operation. This is commonly used when the matrix is being used as a workspace
// or temporary matrix.
//
// If the matrix is a view, using Reset may result in data corruption in elements outside
// the view. Similarly, if the matrix shares backing data with another variable, using
// Reset may lead to unexpected changes in data values.
type Reseter interface {
Reset()
}
// A Copier can make a copy of elements of a into the receiver. The submatrix copied
// starts at row and column 0 and has dimensions equal to the minimum dimensions of
// the two matrices. The number of row and columns copied is returned.
// Copy will copy from a source that aliases the receiver unless the source is transposed;
// an aliasing transpose copy will panic with the exception for a special case when
// the source data has a unitary increment or stride.
type Copier interface {
Copy(a Matrix) (r, c int)
}
// A Grower can grow the size of the represented matrix by the given number of rows and columns.
// Growing beyond the size given by the Caps method will result in the allocation of a new
// matrix and copying of the elements. If Grow is called with negative increments it will
// panic with ErrIndexOutOfRange.
type Grower interface {
Caps() (r, c int)
Grow(r, c int) Matrix
}
// A RawMatrixSetter can set the underlying blas64.General used by the receiver. There is no restriction
// on the shape of the receiver. Changes to the receiver's elements will be reflected in the blas64.General.Data.
type RawMatrixSetter interface {
SetRawMatrix(a blas64.General)
}
// A RawMatrixer can return a blas64.General representation of the receiver. Changes to the blas64.General.Data
// slice will be reflected in the original matrix, changes to the Rows, Cols and Stride fields will not.
type RawMatrixer interface {
RawMatrix() blas64.General
}
// A RawVectorer can return a blas64.Vector representation of the receiver. Changes to the blas64.Vector.Data
// slice will be reflected in the original matrix, changes to the Inc field will not.
type RawVectorer interface {
RawVector() blas64.Vector
}
// A NonZeroDoer can call a function for each non-zero element of the receiver.
// The parameters of the function are the element indices and its value.
type NonZeroDoer interface {
DoNonZero(func(i, j int, v float64))
}
// A RowNonZeroDoer can call a function for each non-zero element of a row of the receiver.
// The parameters of the function are the element indices and its value.
type RowNonZeroDoer interface {
DoRowNonZero(i int, fn func(i, j int, v float64))
}
// A ColNonZeroDoer can call a function for each non-zero element of a column of the receiver.
// The parameters of the function are the element indices and its value.
type ColNonZeroDoer interface {
DoColNonZero(j int, fn func(i, j int, v float64))
}
// A SolveToer can solve a linear system A⋅X = B or Aᵀ⋅X = B where A is a matrix
// represented by the receiver and B is a given matrix, storing the result into
// dst.
//
// If dst is empty, SolveTo will resize it to the correct size, otherwise it
// must have the correct size. Individual implementations may impose other
// restrictions on the input parameters, for example that A is a square matrix.
type SolveToer interface {
SolveTo(dst *Dense, trans bool, b Matrix) error
}
// untranspose untransposes a matrix if applicable. If a is an Untransposer, then
// untranspose returns the underlying matrix and true. If it is not, then it returns
// the input matrix and false.
func untranspose(a Matrix) (Matrix, bool) {
if ut, ok := a.(Untransposer); ok {
return ut.Untranspose(), true
}
return a, false
}
// untransposeExtract returns an untransposed matrix in a built-in matrix type.
//
// The untransposed matrix is returned unaltered if it is a built-in matrix type.
// Otherwise, if it implements a Raw method, an appropriate built-in type value
// is returned holding the raw matrix value of the input. If neither of these
// is possible, the untransposed matrix is returned.
func untransposeExtract(a Matrix) (Matrix, bool) {
ut, trans := untranspose(a)
switch m := ut.(type) {
case *DiagDense, *SymBandDense, *TriBandDense, *BandDense, *TriDense, *SymDense, *Dense, *VecDense, *Tridiag:
return m, trans
// TODO(btracey): Add here if we ever have an equivalent of RawDiagDense.
case RawSymBander:
rsb := m.RawSymBand()
if rsb.Uplo != blas.Upper {
return ut, trans
}
var sb SymBandDense
sb.SetRawSymBand(rsb)
return &sb, trans
case RawTriBander:
rtb := m.RawTriBand()
if rtb.Diag == blas.Unit {
return ut, trans
}
var tb TriBandDense
tb.SetRawTriBand(rtb)
return &tb, trans
case RawBander:
var b BandDense
b.SetRawBand(m.RawBand())
return &b, trans
case RawTriangular:
rt := m.RawTriangular()
if rt.Diag == blas.Unit {
return ut, trans
}
var t TriDense
t.SetRawTriangular(rt)
return &t, trans
case RawSymmetricer:
rs := m.RawSymmetric()
if rs.Uplo != blas.Upper {
return ut, trans
}
var s SymDense
s.SetRawSymmetric(rs)
return &s, trans
case RawMatrixer:
var d Dense
d.SetRawMatrix(m.RawMatrix())
return &d, trans
case RawVectorer:
var v VecDense
v.SetRawVector(m.RawVector())
return &v, trans
case RawTridiagonaler:
var d Tridiag
d.SetRawTridiagonal(m.RawTridiagonal())
return &d, trans
default:
return ut, trans
}
}
// TODO(btracey): Consider adding CopyCol/CopyRow if the behavior seems useful.
// TODO(btracey): Add in fast paths to Row/Col for the other concrete types
// (TriDense, etc.) as well as relevant interfaces (RowColer, RawRowViewer, etc.)
// Col copies the elements in the jth column of the matrix into the slice dst.
// The length of the provided slice must equal the number of rows, unless the
// slice is nil in which case a new slice is first allocated.
func Col(dst []float64, j int, a Matrix) []float64 {
r, c := a.Dims()
if j < 0 || j >= c {
panic(ErrColAccess)
}
if dst == nil {
dst = make([]float64, r)
} else {
if len(dst) != r {
panic(ErrColLength)
}
}
aU, aTrans := untranspose(a)
if rm, ok := aU.(RawMatrixer); ok {
m := rm.RawMatrix()
if aTrans {
copy(dst, m.Data[j*m.Stride:j*m.Stride+m.Cols])
return dst
}
blas64.Copy(blas64.Vector{N: r, Inc: m.Stride, Data: m.Data[j:]},
blas64.Vector{N: r, Inc: 1, Data: dst},
)
return dst
}
for i := 0; i < r; i++ {
dst[i] = a.At(i, j)
}
return dst
}
// Row copies the elements in the ith row of the matrix into the slice dst.
// The length of the provided slice must equal the number of columns, unless the
// slice is nil in which case a new slice is first allocated.
func Row(dst []float64, i int, a Matrix) []float64 {
r, c := a.Dims()
if i < 0 || i >= r {
panic(ErrColAccess)
}
if dst == nil {
dst = make([]float64, c)
} else {
if len(dst) != c {
panic(ErrRowLength)
}
}
aU, aTrans := untranspose(a)
if rm, ok := aU.(RawMatrixer); ok {
m := rm.RawMatrix()
if aTrans {
blas64.Copy(blas64.Vector{N: c, Inc: m.Stride, Data: m.Data[i:]},
blas64.Vector{N: c, Inc: 1, Data: dst},
)
return dst
}
copy(dst, m.Data[i*m.Stride:i*m.Stride+m.Cols])
return dst
}
for j := 0; j < c; j++ {
dst[j] = a.At(i, j)
}
return dst
}
// Cond returns the condition number of the given matrix under the given norm.
// The condition number must be based on the 1-norm, 2-norm or ∞-norm.
// Cond will panic with ErrZeroLength if the matrix has zero size.
//
// BUG(btracey): The computation of the 1-norm and ∞-norm for non-square matrices
// is inaccurate, although is typically the right order of magnitude. See
// https://github.com/xianyi/OpenBLAS/issues/636. While the value returned will
// change with the resolution of this bug, the result from Cond will match the
// condition number used internally.
func Cond(a Matrix, norm float64) float64 {
m, n := a.Dims()
if m == 0 || n == 0 {
panic(ErrZeroLength)
}
var lnorm lapack.MatrixNorm
switch norm {
default:
panic("mat: bad norm value")
case 1:
lnorm = lapack.MaxColumnSum
case 2:
var svd SVD
ok := svd.Factorize(a, SVDNone)
if !ok {
return math.Inf(1)
}
return svd.Cond()
case math.Inf(1):
lnorm = lapack.MaxRowSum
}
if m == n {
// Use the LU decomposition to compute the condition number.
var lu LU
lu.factorize(a, lnorm)
return lu.Cond()
}
if m > n {
// Use the QR factorization to compute the condition number.
var qr QR
qr.factorize(a, lnorm)
return qr.Cond()
}
// Use the LQ factorization to compute the condition number.
var lq LQ
lq.factorize(a, lnorm)
return lq.Cond()
}
// Det returns the determinant of the square matrix a. In many expressions using
// LogDet will be more numerically stable.
//
// Det panics with ErrSquare if a is not square and with ErrZeroLength if a has
// zero size.
func Det(a Matrix) float64 {
det, sign := LogDet(a)
return math.Exp(det) * sign
}
// Dot returns the sum of the element-wise product of a and b.
//
// Dot panics with ErrShape if the vector sizes are unequal and with
// ErrZeroLength if the sizes are zero.
func Dot(a, b Vector) float64 {
la := a.Len()
lb := b.Len()
if la != lb {
panic(ErrShape)
}
if la == 0 {
panic(ErrZeroLength)
}
if arv, ok := a.(RawVectorer); ok {
if brv, ok := b.(RawVectorer); ok {
return blas64.Dot(arv.RawVector(), brv.RawVector())
}
}
var sum float64
for i := 0; i < la; i++ {
sum += a.At(i, 0) * b.At(i, 0)
}
return sum
}
// Equal returns whether the matrices a and b have the same size
// and are element-wise equal.
func Equal(a, b Matrix) bool {
ar, ac := a.Dims()
br, bc := b.Dims()
if ar != br || ac != bc {
return false
}
aU, aTrans := untranspose(a)
bU, bTrans := untranspose(b)
if rma, ok := aU.(RawMatrixer); ok {
if rmb, ok := bU.(RawMatrixer); ok {
ra := rma.RawMatrix()
rb := rmb.RawMatrix()
if aTrans == bTrans {
for i := 0; i < ra.Rows; i++ {
for j := 0; j < ra.Cols; j++ {
if ra.Data[i*ra.Stride+j] != rb.Data[i*rb.Stride+j] {
return false
}
}
}
return true
}
for i := 0; i < ra.Rows; i++ {
for j := 0; j < ra.Cols; j++ {
if ra.Data[i*ra.Stride+j] != rb.Data[j*rb.Stride+i] {
return false
}
}
}
return true
}
}
if rma, ok := aU.(RawSymmetricer); ok {
if rmb, ok := bU.(RawSymmetricer); ok {
ra := rma.RawSymmetric()
rb := rmb.RawSymmetric()
// Symmetric matrices are always upper and equal to their transpose.
for i := 0; i < ra.N; i++ {
for j := i; j < ra.N; j++ {
if ra.Data[i*ra.Stride+j] != rb.Data[i*rb.Stride+j] {
return false
}
}
}
return true
}
}
if ra, ok := aU.(*VecDense); ok {
if rb, ok := bU.(*VecDense); ok {
// If the raw vectors are the same length they must either both be
// transposed or both not transposed (or have length 1).
for i := 0; i < ra.mat.N; i++ {
if ra.mat.Data[i*ra.mat.Inc] != rb.mat.Data[i*rb.mat.Inc] {
return false
}
}
return true
}
}
for i := 0; i < ar; i++ {
for j := 0; j < ac; j++ {
if a.At(i, j) != b.At(i, j) {
return false
}
}
}
return true
}
// EqualApprox returns whether the matrices a and b have the same size and contain all equal
// elements with tolerance for element-wise equality specified by epsilon. Matrices
// with non-equal shapes are not equal.
func EqualApprox(a, b Matrix, epsilon float64) bool {
ar, ac := a.Dims()
br, bc := b.Dims()
if ar != br || ac != bc {
return false
}
aU, aTrans := untranspose(a)
bU, bTrans := untranspose(b)
if rma, ok := aU.(RawMatrixer); ok {
if rmb, ok := bU.(RawMatrixer); ok {
ra := rma.RawMatrix()
rb := rmb.RawMatrix()
if aTrans == bTrans {
for i := 0; i < ra.Rows; i++ {
for j := 0; j < ra.Cols; j++ {
if !scalar.EqualWithinAbsOrRel(ra.Data[i*ra.Stride+j], rb.Data[i*rb.Stride+j], epsilon, epsilon) {
return false
}
}
}
return true
}
for i := 0; i < ra.Rows; i++ {
for j := 0; j < ra.Cols; j++ {
if !scalar.EqualWithinAbsOrRel(ra.Data[i*ra.Stride+j], rb.Data[j*rb.Stride+i], epsilon, epsilon) {
return false
}
}
}
return true
}
}
if rma, ok := aU.(RawSymmetricer); ok {
if rmb, ok := bU.(RawSymmetricer); ok {
ra := rma.RawSymmetric()
rb := rmb.RawSymmetric()
// Symmetric matrices are always upper and equal to their transpose.
for i := 0; i < ra.N; i++ {
for j := i; j < ra.N; j++ {
if !scalar.EqualWithinAbsOrRel(ra.Data[i*ra.Stride+j], rb.Data[i*rb.Stride+j], epsilon, epsilon) {
return false
}
}
}
return true
}
}
if ra, ok := aU.(*VecDense); ok {
if rb, ok := bU.(*VecDense); ok {
// If the raw vectors are the same length they must either both be
// transposed or both not transposed (or have length 1).
for i := 0; i < ra.mat.N; i++ {
if !scalar.EqualWithinAbsOrRel(ra.mat.Data[i*ra.mat.Inc], rb.mat.Data[i*rb.mat.Inc], epsilon, epsilon) {
return false
}
}
return true
}
}
for i := 0; i < ar; i++ {
for j := 0; j < ac; j++ {
if !scalar.EqualWithinAbsOrRel(a.At(i, j), b.At(i, j), epsilon, epsilon) {
return false
}
}
}
return true
}
// LogDet returns the log of the determinant and the sign of the determinant
// for the matrix that has been factorized. Numerical stability in product and
// division expressions is generally improved by working in log space.
//
// LogDet panics with ErrSquare is a is not square and with ErrZeroLength if a
// has zero size.
func LogDet(a Matrix) (det float64, sign float64) {
// TODO(btracey): Add specialized routines for TriDense, etc.
var lu LU
lu.Factorize(a)
return lu.LogDet()
}
// Max returns the largest element value of the matrix A.
//
// Max will panic with ErrZeroLength if the matrix has zero size.
func Max(a Matrix) float64 {
r, c := a.Dims()
if r == 0 || c == 0 {
panic(ErrZeroLength)
}
// Max(A) = Max(Aᵀ)
aU, _ := untranspose(a)
switch m := aU.(type) {
case RawMatrixer:
rm := m.RawMatrix()
max := math.Inf(-1)
for i := 0; i < rm.Rows; i++ {
for _, v := range rm.Data[i*rm.Stride : i*rm.Stride+rm.Cols] {
if v > max {
max = v
}
}
}
return max
case RawTriangular:
rm := m.RawTriangular()
// The max of a triangular is at least 0 unless the size is 1.
if rm.N == 1 {
return rm.Data[0]
}
max := 0.0
if rm.Uplo == blas.Upper {
for i := 0; i < rm.N; i++ {
for _, v := range rm.Data[i*rm.Stride+i : i*rm.Stride+rm.N] {
if v > max {
max = v
}
}
}
return max
}
for i := 0; i < rm.N; i++ {
for _, v := range rm.Data[i*rm.Stride : i*rm.Stride+i+1] {
if v > max {
max = v
}
}
}
return max
case RawSymmetricer:
rm := m.RawSymmetric()
if rm.Uplo != blas.Upper {
panic(badSymTriangle)
}
max := math.Inf(-1)
for i := 0; i < rm.N; i++ {
for _, v := range rm.Data[i*rm.Stride+i : i*rm.Stride+rm.N] {
if v > max {
max = v
}
}
}
return max
default:
r, c := aU.Dims()
max := math.Inf(-1)
for i := 0; i < r; i++ {
for j := 0; j < c; j++ {
v := aU.At(i, j)
if v > max {
max = v
}
}
}
return max
}
}
// Min returns the smallest element value of the matrix A.
//
// Min will panic with ErrZeroLength if the matrix has zero size.
func Min(a Matrix) float64 {
r, c := a.Dims()
if r == 0 || c == 0 {
panic(ErrZeroLength)
}
// Min(A) = Min(Aᵀ)
aU, _ := untranspose(a)
switch m := aU.(type) {
case RawMatrixer:
rm := m.RawMatrix()
min := math.Inf(1)
for i := 0; i < rm.Rows; i++ {
for _, v := range rm.Data[i*rm.Stride : i*rm.Stride+rm.Cols] {
if v < min {
min = v
}
}
}
return min
case RawTriangular:
rm := m.RawTriangular()
// The min of a triangular is at most 0 unless the size is 1.
if rm.N == 1 {
return rm.Data[0]
}
min := 0.0
if rm.Uplo == blas.Upper {
for i := 0; i < rm.N; i++ {
for _, v := range rm.Data[i*rm.Stride+i : i*rm.Stride+rm.N] {
if v < min {
min = v
}
}
}
return min
}
for i := 0; i < rm.N; i++ {
for _, v := range rm.Data[i*rm.Stride : i*rm.Stride+i+1] {
if v < min {
min = v
}
}
}
return min
case RawSymmetricer:
rm := m.RawSymmetric()
if rm.Uplo != blas.Upper {
panic(badSymTriangle)
}
min := math.Inf(1)
for i := 0; i < rm.N; i++ {
for _, v := range rm.Data[i*rm.Stride+i : i*rm.Stride+rm.N] {
if v < min {
min = v
}
}
}
return min
default:
r, c := aU.Dims()
min := math.Inf(1)
for i := 0; i < r; i++ {
for j := 0; j < c; j++ {
v := aU.At(i, j)
if v < min {
min = v
}
}
}
return min
}
}
// A Normer can compute a norm of the matrix. Valid norms are:
//
// 1 - The maximum absolute column sum
// 2 - The Frobenius norm, the square root of the sum of the squares of the elements
// Inf - The maximum absolute row sum
type Normer interface {
Norm(norm float64) float64
}
// Norm returns the specified norm of the matrix A. Valid norms are:
//
// 1 - The maximum absolute column sum
// 2 - The Frobenius norm, the square root of the sum of the squares of the elements
// Inf - The maximum absolute row sum
//
// If a is a Normer, its Norm method will be used to calculate the norm.
//
// Norm will panic with ErrNormOrder if an illegal norm is specified and with
// ErrShape if the matrix has zero size.
func Norm(a Matrix, norm float64) float64 {
r, c := a.Dims()
if r == 0 || c == 0 {
panic(ErrZeroLength)
}
m, trans := untransposeExtract(a)
if m, ok := m.(Normer); ok {
if trans {
switch norm {
case 1:
norm = math.Inf(1)
case math.Inf(1):
norm = 1
}
}
return m.Norm(norm)
}
switch norm {
default:
panic(ErrNormOrder)
case 1:
var max float64
for j := 0; j < c; j++ {
var sum float64
for i := 0; i < r; i++ {
sum += math.Abs(a.At(i, j))
}
if sum > max {
max = sum
}
}
return max
case 2:
var sum float64
for i := 0; i < r; i++ {
for j := 0; j < c; j++ {
v := a.At(i, j)
sum += v * v
}
}
return math.Sqrt(sum)
case math.Inf(1):
var max float64
for i := 0; i < r; i++ {
var sum float64
for j := 0; j < c; j++ {
sum += math.Abs(a.At(i, j))
}
if sum > max {
max = sum
}
}
return max
}
}
// normLapack converts the float64 norm input in Norm to a lapack.MatrixNorm.
func normLapack(norm float64, aTrans bool) lapack.MatrixNorm {
switch norm {
case 1:
n := lapack.MaxColumnSum
if aTrans {
n = lapack.MaxRowSum
}
return n
case 2:
return lapack.Frobenius
case math.Inf(1):
n := lapack.MaxRowSum
if aTrans {
n = lapack.MaxColumnSum
}
return n
default:
panic(ErrNormOrder)
}
}
// Sum returns the sum of the elements of the matrix.
//
// Sum will panic with ErrZeroLength if the matrix has zero size.
func Sum(a Matrix) float64 {
r, c := a.Dims()
if r == 0 || c == 0 {
panic(ErrZeroLength)
}
var sum float64
aU, _ := untranspose(a)
switch rma := aU.(type) {
case RawSymmetricer:
rm := rma.RawSymmetric()
for i := 0; i < rm.N; i++ {
// Diagonals count once while off-diagonals count twice.
sum += rm.Data[i*rm.Stride+i]
var s float64
for _, v := range rm.Data[i*rm.Stride+i+1 : i*rm.Stride+rm.N] {
s += v
}
sum += 2 * s
}
return sum
case RawTriangular:
rm := rma.RawTriangular()
var startIdx, endIdx int
for i := 0; i < rm.N; i++ {
// Start and end index for this triangle-row.
switch rm.Uplo {
case blas.Upper:
startIdx = i
endIdx = rm.N
case blas.Lower:
startIdx = 0
endIdx = i + 1
default:
panic(badTriangle)
}
for _, v := range rm.Data[i*rm.Stride+startIdx : i*rm.Stride+endIdx] {
sum += v
}
}
return sum
case RawMatrixer:
rm := rma.RawMatrix()
for i := 0; i < rm.Rows; i++ {
for _, v := range rm.Data[i*rm.Stride : i*rm.Stride+rm.Cols] {
sum += v
}
}
return sum
case *VecDense:
rm := rma.RawVector()
for i := 0; i < rm.N; i++ {
sum += rm.Data[i*rm.Inc]
}
return sum
default:
r, c := a.Dims()
for i := 0; i < r; i++ {
for j := 0; j < c; j++ {
sum += a.At(i, j)
}
}
return sum
}
}
// A Tracer can compute the trace of the matrix. Trace must panic with ErrSquare
// if the matrix is not square.
type Tracer interface {
Trace() float64
}
// Trace returns the trace of the matrix. If a is a Tracer, its Trace method
// will be used to calculate the matrix trace.
//
// Trace will panic with ErrSquare if the matrix is not square and with
// ErrZeroLength if the matrix has zero size.
func Trace(a Matrix) float64 {
r, c := a.Dims()
if r == 0 || c == 0 {
panic(ErrZeroLength)
}
m, _ := untransposeExtract(a)
if t, ok := m.(Tracer); ok {
return t.Trace()
}
if r != c {
panic(ErrSquare)
}
var v float64
for i := 0; i < r; i++ {
v += a.At(i, i)
}
return v
}
// use returns a float64 slice with l elements, using f if it
// has the necessary capacity, otherwise creating a new slice.
func use(f []float64, l int) []float64 {
if l <= cap(f) {
return f[:l]
}
return make([]float64, l)
}
// useZeroed returns a float64 slice with l elements, using f if it
// has the necessary capacity, otherwise creating a new slice. The
// elements of the returned slice are guaranteed to be zero.
func useZeroed(f []float64, l int) []float64 {
if l <= cap(f) {
f = f[:l]
zero(f)
return f
}
return make([]float64, l)
}
// zero zeros the given slice's elements.
func zero(f []float64) {
for i := range f {
f[i] = 0
}
}
// useInt returns an int slice with l elements, using i if it
// has the necessary capacity, otherwise creating a new slice.
func useInt(i []int, l int) []int {
if l <= cap(i) {
return i[:l]
}
return make([]int, l)
}
|