1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import "fmt"
// Product calculates the product of the given factors and places the result in
// the receiver. The order of multiplication operations is optimized to minimize
// the number of floating point operations on the basis that all matrix
// multiplications are general.
func (m *Dense) Product(factors ...Matrix) {
// The operation order optimisation is the naive O(n^3) dynamic
// programming approach and does not take into consideration
// finer-grained optimisations that might be available.
//
// TODO(kortschak) Consider using the O(nlogn) or O(mlogn)
// algorithms that are available. e.g.
//
// e.g. http://www.jofcis.com/publishedpapers/2014_10_10_4299_4306.pdf
//
// In the case that this is replaced, retain this code in
// tests to compare against.
r, c := m.Dims()
switch len(factors) {
case 0:
if r != 0 || c != 0 {
panic(ErrShape)
}
return
case 1:
m.reuseAsNonZeroed(factors[0].Dims())
m.Copy(factors[0])
return
case 2:
// Don't do work that we know the answer to.
m.Mul(factors[0], factors[1])
return
}
p := newMultiplier(m, factors)
p.optimize()
result := p.multiply()
m.reuseAsNonZeroed(result.Dims())
m.Copy(result)
putDenseWorkspace(result)
}
// debugProductWalk enables debugging output for Product.
const debugProductWalk = false
// multiplier performs operation order optimisation and tree traversal.
type multiplier struct {
// factors is the ordered set of
// factors to multiply.
factors []Matrix
// dims is the chain of factor
// dimensions.
dims []int
// table contains the dynamic
// programming costs and subchain
// division indices.
table table
}
func newMultiplier(m *Dense, factors []Matrix) *multiplier {
// Check size early, but don't yet
// allocate data for m.
r, c := m.Dims()
fr, fc := factors[0].Dims() // newMultiplier is only called with len(factors) > 2.
if !m.IsEmpty() {
if fr != r {
panic(ErrShape)
}
if _, lc := factors[len(factors)-1].Dims(); lc != c {
panic(ErrShape)
}
}
dims := make([]int, len(factors)+1)
dims[0] = r
dims[len(dims)-1] = c
pc := fc
for i, f := range factors[1:] {
cr, cc := f.Dims()
dims[i+1] = cr
if pc != cr {
panic(ErrShape)
}
pc = cc
}
return &multiplier{
factors: factors,
dims: dims,
table: newTable(len(factors)),
}
}
// optimize determines an optimal matrix multiply operation order.
func (p *multiplier) optimize() {
if debugProductWalk {
fmt.Printf("chain dims: %v\n", p.dims)
}
const maxInt = int(^uint(0) >> 1)
for f := 1; f < len(p.factors); f++ {
for i := 0; i < len(p.factors)-f; i++ {
j := i + f
p.table.set(i, j, entry{cost: maxInt})
for k := i; k < j; k++ {
cost := p.table.at(i, k).cost + p.table.at(k+1, j).cost + p.dims[i]*p.dims[k+1]*p.dims[j+1]
if cost < p.table.at(i, j).cost {
p.table.set(i, j, entry{cost: cost, k: k})
}
}
}
}
}
// multiply walks the optimal operation tree found by optimize,
// leaving the final result in the stack. It returns the
// product, which may be copied but should be returned to
// the workspace pool.
func (p *multiplier) multiply() *Dense {
result, _ := p.multiplySubchain(0, len(p.factors)-1)
if debugProductWalk {
r, c := result.Dims()
fmt.Printf("\tpop result (%d×%d) cost=%d\n", r, c, p.table.at(0, len(p.factors)-1).cost)
}
return result.(*Dense)
}
func (p *multiplier) multiplySubchain(i, j int) (m Matrix, intermediate bool) {
if i == j {
return p.factors[i], false
}
a, aTmp := p.multiplySubchain(i, p.table.at(i, j).k)
b, bTmp := p.multiplySubchain(p.table.at(i, j).k+1, j)
ar, ac := a.Dims()
br, bc := b.Dims()
if ac != br {
// Panic with a string since this
// is not a user-facing panic.
panic(ErrShape.Error())
}
if debugProductWalk {
fmt.Printf("\tpush f[%d] (%d×%d)%s * f[%d] (%d×%d)%s\n",
i, ar, ac, result(aTmp), j, br, bc, result(bTmp))
}
r := getDenseWorkspace(ar, bc, false)
r.Mul(a, b)
if aTmp {
putDenseWorkspace(a.(*Dense))
}
if bTmp {
putDenseWorkspace(b.(*Dense))
}
return r, true
}
type entry struct {
k int // is the chain subdivision index.
cost int // cost is the cost of the operation.
}
// table is a row major n×n dynamic programming table.
type table struct {
n int
entries []entry
}
func newTable(n int) table {
return table{n: n, entries: make([]entry, n*n)}
}
func (t table) at(i, j int) entry { return t.entries[i*t.n+j] }
func (t table) set(i, j int, e entry) { t.entries[i*t.n+j] = e }
type result bool
func (r result) String() string {
if r {
return " (popped result)"
}
return ""
}
|