File: qr_test.go

package info (click to toggle)
golang-gonum-v1-gonum 0.15.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 18,792 kB
  • sloc: asm: 6,252; fortran: 5,271; sh: 377; ruby: 211; makefile: 98
file content (251 lines) | stat: -rw-r--r-- 5,540 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package mat

import (
	"math"
	"testing"

	"golang.org/x/exp/rand"

	"gonum.org/v1/gonum/blas/blas64"
)

func TestQR(t *testing.T) {
	t.Parallel()
	rnd := rand.New(rand.NewSource(1))
	for _, test := range []struct {
		m, n int
		big  bool
	}{
		{m: 5, n: 5},
		{m: 10, n: 5},
		{m: 1e5, n: 3, big: true}, // Test that very tall matrices do not OoM.
	} {
		m := test.m
		n := test.n
		a := NewDense(m, n, nil)
		for i := 0; i < m; i++ {
			for j := 0; j < n; j++ {
				a.Set(i, j, rnd.NormFloat64())
			}
		}
		var want Dense
		want.CloneFrom(a)

		var qr QR
		qr.Factorize(a)
		if test.big {
			_ = qr.At(0, 0)     // should not panic, even for big matrices
			_ = qr.At(m-1, n-1) // should not panic, even for big matrices
			// We cannot proceed past here for big matrices.
			continue
		}

		var q, r Dense
		qr.QTo(&q)

		if !isOrthonormal(&q, 1e-10) {
			t.Errorf("Q is not orthonormal: m = %v, n = %v", m, n)
		}

		if !EqualApprox(a, &qr, 1e-14) {
			t.Errorf("m=%d,n=%d: A and QR are not equal", m, n)
		}
		if !EqualApprox(a.T(), qr.T(), 1e-14) {
			t.Errorf("m=%d,n=%d: Aᵀ and (QR)ᵀ are not equal", m, n)
		}

		qr.RTo(&r)

		var got Dense
		got.Mul(&q, &r)
		if !EqualApprox(&got, &want, 1e-12) {
			t.Errorf("QR does not equal original matrix. \nWant: %v\nGot: %v", want, got)
		}

		// Verify indirect QR.At()
		got.Reset()
		got.ReuseAs(m, n)
		qr.q.Reset() // reset q matrix to force lazy computation
		for i := 0; i < m; i++ {
			for j := 0; j < n; j++ {
				got.set(i, j, qr.At(i, j))
			}
		}

		if !EqualApprox(a, &got, 1e-14) {
			t.Errorf("m=%d,n=%d: A and QR (computed with QR.At()) are not equal", m, n)
		}
		if !EqualApprox(a.T(), got.T(), 1e-14) {
			t.Errorf("m=%d,n=%d: Aᵀ and (QR)ᵀ (computed with QR.At()) are not equal", m, n)
		}
	}
}

func isOrthonormal(q *Dense, tol float64) bool {
	m, n := q.Dims()
	if m != n {
		return false
	}
	for i := 0; i < m; i++ {
		for j := i; j < m; j++ {
			dot := blas64.Dot(blas64.Vector{N: m, Inc: 1, Data: q.mat.Data[i*q.mat.Stride:]},
				blas64.Vector{N: m, Inc: 1, Data: q.mat.Data[j*q.mat.Stride:]})
			// Dot product should be 1 if i == j and 0 otherwise.
			if i == j && math.Abs(dot-1) > tol {
				return false
			}
			if i != j && math.Abs(dot) > tol {
				return false
			}
		}
	}
	return true
}

func TestQRSolveTo(t *testing.T) {
	t.Parallel()
	rnd := rand.New(rand.NewSource(1))
	for _, trans := range []bool{false, true} {
		for _, test := range []struct {
			m, n, bc int
		}{
			{5, 5, 1},
			{10, 5, 1},
			{5, 5, 3},
			{10, 5, 3},
		} {
			m := test.m
			n := test.n
			bc := test.bc
			a := NewDense(m, n, nil)
			for i := 0; i < m; i++ {
				for j := 0; j < n; j++ {
					a.Set(i, j, rnd.Float64())
				}
			}
			br := m
			if trans {
				br = n
			}
			b := NewDense(br, bc, nil)
			for i := 0; i < br; i++ {
				for j := 0; j < bc; j++ {
					b.Set(i, j, rnd.Float64())
				}
			}
			var x Dense
			var qr QR
			qr.Factorize(a)
			err := qr.SolveTo(&x, trans, b)
			if err != nil {
				t.Errorf("unexpected error from QR solve: %v", err)
			}

			// Test that the normal equations hold.
			// Aᵀ * A * x = Aᵀ * b if !trans
			// A * Aᵀ * x = A * b if trans
			var lhs Dense
			var rhs Dense
			if trans {
				var tmp Dense
				tmp.Mul(a, a.T())
				lhs.Mul(&tmp, &x)
				rhs.Mul(a, b)
			} else {
				var tmp Dense
				tmp.Mul(a.T(), a)
				lhs.Mul(&tmp, &x)
				rhs.Mul(a.T(), b)
			}
			if !EqualApprox(&lhs, &rhs, 1e-10) {
				t.Errorf("Normal equations do not hold.\nLHS: %v\n, RHS: %v\n", lhs, rhs)
			}
		}
	}
	// TODO(btracey): Add in testOneInput when it exists.
}

func TestQRSolveVecTo(t *testing.T) {
	t.Parallel()
	rnd := rand.New(rand.NewSource(1))
	for _, trans := range []bool{false, true} {
		for _, test := range []struct {
			m, n int
		}{
			{5, 5},
			{10, 5},
		} {
			m := test.m
			n := test.n
			a := NewDense(m, n, nil)
			for i := 0; i < m; i++ {
				for j := 0; j < n; j++ {
					a.Set(i, j, rnd.Float64())
				}
			}
			br := m
			if trans {
				br = n
			}
			b := NewVecDense(br, nil)
			for i := 0; i < br; i++ {
				b.SetVec(i, rnd.Float64())
			}
			var x VecDense
			var qr QR
			qr.Factorize(a)
			err := qr.SolveVecTo(&x, trans, b)
			if err != nil {
				t.Errorf("unexpected error from QR solve: %v", err)
			}

			// Test that the normal equations hold.
			// Aᵀ * A * x = Aᵀ * b if !trans
			// A * Aᵀ * x = A * b if trans
			var lhs Dense
			var rhs Dense
			if trans {
				var tmp Dense
				tmp.Mul(a, a.T())
				lhs.Mul(&tmp, &x)
				rhs.Mul(a, b)
			} else {
				var tmp Dense
				tmp.Mul(a.T(), a)
				lhs.Mul(&tmp, &x)
				rhs.Mul(a.T(), b)
			}
			if !EqualApprox(&lhs, &rhs, 1e-10) {
				t.Errorf("Normal equations do not hold.\nLHS: %v\n, RHS: %v\n", lhs, rhs)
			}
		}
	}
	// TODO(btracey): Add in testOneInput when it exists.
}

func TestQRSolveCondTo(t *testing.T) {
	t.Parallel()
	for _, test := range []*Dense{
		NewDense(2, 2, []float64{1, 0, 0, 1e-20}),
		NewDense(3, 2, []float64{1, 0, 0, 1e-20, 0, 0}),
	} {
		m, _ := test.Dims()
		var qr QR
		qr.Factorize(test)
		b := NewDense(m, 2, nil)
		var x Dense
		if err := qr.SolveTo(&x, false, b); err == nil {
			t.Error("No error for near-singular matrix in matrix solve.")
		}

		bvec := NewVecDense(m, nil)
		var xvec VecDense
		if err := qr.SolveVecTo(&xvec, false, bvec); err == nil {
			t.Error("No error for near-singular matrix in matrix solve.")
		}
	}
}