1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
|
// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack"
"gonum.org/v1/gonum/lapack/lapack64"
)
const badRcond = "mat: invalid rcond value"
// SVD is a type for creating and using the Singular Value Decomposition
// of a matrix.
type SVD struct {
kind SVDKind
s []float64
u blas64.General
vt blas64.General
}
// SVDKind specifies the treatment of singular vectors during an SVD
// factorization.
type SVDKind int
const (
// SVDNone specifies that no singular vectors should be computed during
// the decomposition.
SVDNone SVDKind = 0
// SVDThinU specifies the thin decomposition for U should be computed.
SVDThinU SVDKind = 1 << (iota - 1)
// SVDFullU specifies the full decomposition for U should be computed.
SVDFullU
// SVDThinV specifies the thin decomposition for V should be computed.
SVDThinV
// SVDFullV specifies the full decomposition for V should be computed.
SVDFullV
// SVDThin is a convenience value for computing both thin vectors.
SVDThin SVDKind = SVDThinU | SVDThinV
// SVDFull is a convenience value for computing both full vectors.
SVDFull SVDKind = SVDFullU | SVDFullV
)
// succFact returns whether the receiver contains a successful factorization.
func (svd *SVD) succFact() bool {
return len(svd.s) != 0
}
// Factorize computes the singular value decomposition (SVD) of the input matrix A.
// The singular values of A are computed in all cases, while the singular
// vectors are optionally computed depending on the input kind.
//
// The full singular value decomposition (kind == SVDFull) is a factorization
// of an m×n matrix A of the form
//
// A = U * Σ * Vᵀ
//
// where Σ is an m×n diagonal matrix, U is an m×m orthogonal matrix, and V is an
// n×n orthogonal matrix. The diagonal elements of Σ are the singular values of A.
// The first min(m,n) columns of U and V are, respectively, the left and right
// singular vectors of A.
//
// Significant storage space can be saved by using the thin representation of
// the SVD (kind == SVDThin) instead of the full SVD, especially if
// m >> n or m << n. The thin SVD finds
//
// A = U~ * Σ * V~ᵀ
//
// where U~ is of size m×min(m,n), Σ is a diagonal matrix of size min(m,n)×min(m,n)
// and V~ is of size n×min(m,n).
//
// Factorize returns whether the decomposition succeeded. If the decomposition
// failed, routines that require a successful factorization will panic.
func (svd *SVD) Factorize(a Matrix, kind SVDKind) (ok bool) {
// kill previous factorization
svd.s = svd.s[:0]
svd.kind = kind
m, n := a.Dims()
var jobU, jobVT lapack.SVDJob
// TODO(btracey): This code should be modified to have the smaller
// matrix written in-place into aCopy when the lapack/native/dgesvd
// implementation is complete.
switch {
case kind&SVDFullU != 0:
jobU = lapack.SVDAll
svd.u = blas64.General{
Rows: m,
Cols: m,
Stride: m,
Data: use(svd.u.Data, m*m),
}
case kind&SVDThinU != 0:
jobU = lapack.SVDStore
svd.u = blas64.General{
Rows: m,
Cols: min(m, n),
Stride: min(m, n),
Data: use(svd.u.Data, m*min(m, n)),
}
default:
jobU = lapack.SVDNone
}
switch {
case kind&SVDFullV != 0:
svd.vt = blas64.General{
Rows: n,
Cols: n,
Stride: n,
Data: use(svd.vt.Data, n*n),
}
jobVT = lapack.SVDAll
case kind&SVDThinV != 0:
svd.vt = blas64.General{
Rows: min(m, n),
Cols: n,
Stride: n,
Data: use(svd.vt.Data, min(m, n)*n),
}
jobVT = lapack.SVDStore
default:
jobVT = lapack.SVDNone
}
// A is destroyed on call, so copy the matrix.
aCopy := DenseCopyOf(a)
svd.kind = kind
svd.s = use(svd.s, min(m, n))
work := []float64{0}
lapack64.Gesvd(jobU, jobVT, aCopy.mat, svd.u, svd.vt, svd.s, work, -1)
work = getFloat64s(int(work[0]), false)
ok = lapack64.Gesvd(jobU, jobVT, aCopy.mat, svd.u, svd.vt, svd.s, work, len(work))
putFloat64s(work)
if !ok {
svd.kind = 0
}
return ok
}
// Kind returns the SVDKind of the decomposition. If no decomposition has been
// computed, Kind returns -1.
func (svd *SVD) Kind() SVDKind {
if !svd.succFact() {
return -1
}
return svd.kind
}
// Rank returns the rank of A based on the count of singular values greater than
// rcond scaled by the largest singular value.
// Rank will panic if the receiver does not contain a successful factorization or
// rcond is negative.
func (svd *SVD) Rank(rcond float64) int {
if rcond < 0 {
panic(badRcond)
}
if !svd.succFact() {
panic(badFact)
}
s0 := svd.s[0]
for i, v := range svd.s {
if v <= rcond*s0 {
return i
}
}
return len(svd.s)
}
// Cond returns the 2-norm condition number for the factorized matrix. Cond will
// panic if the receiver does not contain a successful factorization.
func (svd *SVD) Cond() float64 {
if !svd.succFact() {
panic(badFact)
}
return svd.s[0] / svd.s[len(svd.s)-1]
}
// Values returns the singular values of the factorized matrix in descending order.
//
// If the input slice is non-nil, the values will be stored in-place into
// the slice. In this case, the slice must have length min(m,n), and Values will
// panic with ErrSliceLengthMismatch otherwise. If the input slice is nil, a new
// slice of the appropriate length will be allocated and returned.
//
// Values will panic if the receiver does not contain a successful factorization.
func (svd *SVD) Values(s []float64) []float64 {
if !svd.succFact() {
panic(badFact)
}
if s == nil {
s = make([]float64, len(svd.s))
}
if len(s) != len(svd.s) {
panic(ErrSliceLengthMismatch)
}
copy(s, svd.s)
return s
}
// UTo extracts the matrix U from the singular value decomposition. The first
// min(m,n) columns are the left singular vectors and correspond to the singular
// values as returned from SVD.Values.
//
// If dst is empty, UTo will resize dst to be m×m if the full U was computed
// and size m×min(m,n) if the thin U was computed. When dst is non-empty, then
// UTo will panic if dst is not the appropriate size. UTo will also panic if
// the receiver does not contain a successful factorization, or if U was
// not computed during factorization.
func (svd *SVD) UTo(dst *Dense) {
if !svd.succFact() {
panic(badFact)
}
kind := svd.kind
if kind&SVDThinU == 0 && kind&SVDFullU == 0 {
panic("svd: u not computed during factorization")
}
r := svd.u.Rows
c := svd.u.Cols
if dst.IsEmpty() {
dst.ReuseAs(r, c)
} else {
r2, c2 := dst.Dims()
if r != r2 || c != c2 {
panic(ErrShape)
}
}
tmp := &Dense{
mat: svd.u,
capRows: r,
capCols: c,
}
dst.Copy(tmp)
}
// VTo extracts the matrix V from the singular value decomposition. The first
// min(m,n) columns are the right singular vectors and correspond to the singular
// values as returned from SVD.Values.
//
// If dst is empty, VTo will resize dst to be n×n if the full V was computed
// and size n×min(m,n) if the thin V was computed. When dst is non-empty, then
// VTo will panic if dst is not the appropriate size. VTo will also panic if
// the receiver does not contain a successful factorization, or if V was
// not computed during factorization.
func (svd *SVD) VTo(dst *Dense) {
if !svd.succFact() {
panic(badFact)
}
kind := svd.kind
if kind&SVDThinV == 0 && kind&SVDFullV == 0 {
panic("svd: v not computed during factorization")
}
r := svd.vt.Rows
c := svd.vt.Cols
if dst.IsEmpty() {
dst.ReuseAs(c, r)
} else {
r2, c2 := dst.Dims()
if c != r2 || r != c2 {
panic(ErrShape)
}
}
tmp := &Dense{
mat: svd.vt,
capRows: r,
capCols: c,
}
dst.Copy(tmp.T())
}
// SolveTo calculates the minimum-norm solution to a linear least squares problem
//
// minimize over n-element vectors x: |b - A*x|_2 and |x|_2
//
// where b is a given m-element vector, using the SVD of m×n matrix A stored in
// the receiver. A may be rank-deficient, that is, the given effective rank can be
//
// rank ≤ min(m,n)
//
// The rank can be computed using SVD.Rank.
//
// Several right-hand side vectors b and solution vectors x can be handled in a
// single call. Vectors b are stored in the columns of the m×k matrix B and the
// resulting vectors x will be stored in the columns of dst. dst must be either
// empty or have the size equal to n×k.
//
// The decomposition must have been factorized computing both the U and V
// singular vectors.
//
// SolveTo returns the residuals calculated from the complete SVD. For this
// value to be valid the factorization must have been performed with at least
// SVDFullU.
func (svd *SVD) SolveTo(dst *Dense, b Matrix, rank int) []float64 {
if !svd.succFact() {
panic(badFact)
}
if rank < 1 || len(svd.s) < rank {
panic("svd: rank out of range")
}
kind := svd.kind
if kind&SVDThinU == 0 && kind&SVDFullU == 0 {
panic("svd: u not computed during factorization")
}
if kind&SVDThinV == 0 && kind&SVDFullV == 0 {
panic("svd: v not computed during factorization")
}
u := Dense{
mat: svd.u,
capRows: svd.u.Rows,
capCols: svd.u.Cols,
}
vt := Dense{
mat: svd.vt,
capRows: svd.vt.Rows,
capCols: svd.vt.Cols,
}
s := svd.s[:rank]
_, bc := b.Dims()
c := getDenseWorkspace(svd.u.Cols, bc, false)
defer putDenseWorkspace(c)
c.Mul(u.T(), b)
y := getDenseWorkspace(rank, bc, false)
defer putDenseWorkspace(y)
y.DivElem(c.slice(0, rank, 0, bc), repVector{vec: s, cols: bc})
dst.Mul(vt.slice(0, rank, 0, svd.vt.Cols).T(), y)
res := make([]float64, bc)
if rank < svd.u.Cols {
c = c.slice(len(s), svd.u.Cols, 0, bc)
for j := range res {
col := c.ColView(j)
res[j] = Dot(col, col)
}
}
return res
}
type repVector struct {
vec []float64
cols int
}
func (m repVector) Dims() (r, c int) { return len(m.vec), m.cols }
func (m repVector) At(i, j int) float64 {
if i < 0 || len(m.vec) <= i || j < 0 || m.cols <= j {
panic(ErrIndexOutOfRange.string) // Panic with string to prevent mat.Error recovery.
}
return m.vec[i]
}
func (m repVector) T() Matrix { return Transpose{m} }
// SolveVecTo calculates the minimum-norm solution to a linear least squares problem
//
// minimize over n-element vectors x: |b - A*x|_2 and |x|_2
//
// where b is a given m-element vector, using the SVD of m×n matrix A stored in
// the receiver. A may be rank-deficient, that is, the given effective rank can be
//
// rank ≤ min(m,n)
//
// The rank can be computed using SVD.Rank.
//
// The resulting vector x will be stored in dst. dst must be either empty or
// have length equal to n.
//
// The decomposition must have been factorized computing both the U and V
// singular vectors.
//
// SolveVecTo returns the residuals calculated from the complete SVD. For this
// value to be valid the factorization must have been performed with at least
// SVDFullU.
func (svd *SVD) SolveVecTo(dst *VecDense, b Vector, rank int) float64 {
if !svd.succFact() {
panic(badFact)
}
if rank < 1 || len(svd.s) < rank {
panic("svd: rank out of range")
}
kind := svd.kind
if kind&SVDThinU == 0 && kind&SVDFullU == 0 {
panic("svd: u not computed during factorization")
}
if kind&SVDThinV == 0 && kind&SVDFullV == 0 {
panic("svd: v not computed during factorization")
}
u := Dense{
mat: svd.u,
capRows: svd.u.Rows,
capCols: svd.u.Cols,
}
vt := Dense{
mat: svd.vt,
capRows: svd.vt.Rows,
capCols: svd.vt.Cols,
}
s := svd.s[:rank]
c := getVecDenseWorkspace(svd.u.Cols, false)
defer putVecDenseWorkspace(c)
c.MulVec(u.T(), b)
y := getVecDenseWorkspace(rank, false)
defer putVecDenseWorkspace(y)
y.DivElemVec(c.sliceVec(0, rank), NewVecDense(rank, s))
dst.MulVec(vt.slice(0, rank, 0, svd.vt.Cols).T(), y)
var res float64
if rank < c.Len() {
c = c.sliceVec(rank, c.Len())
res = Dot(c, c)
}
return res
}
|