1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack"
"gonum.org/v1/gonum/lapack/lapack64"
)
var (
symBandDense *SymBandDense
_ Matrix = symBandDense
_ allMatrix = symBandDense
_ denseMatrix = symBandDense
_ Symmetric = symBandDense
_ Banded = symBandDense
_ SymBanded = symBandDense
_ RawSymBander = symBandDense
_ MutableSymBanded = symBandDense
_ NonZeroDoer = symBandDense
_ RowNonZeroDoer = symBandDense
_ ColNonZeroDoer = symBandDense
)
// SymBandDense represents a symmetric band matrix in dense storage format.
type SymBandDense struct {
mat blas64.SymmetricBand
}
// SymBanded is a symmetric band matrix interface type.
type SymBanded interface {
Banded
// SymmetricDim returns the number of rows/columns in the matrix.
SymmetricDim() int
// SymBand returns the number of rows/columns in the matrix, and the size of
// the bandwidth.
SymBand() (n, k int)
}
// MutableSymBanded is a symmetric band matrix interface type that allows elements
// to be altered.
type MutableSymBanded interface {
SymBanded
SetSymBand(i, j int, v float64)
}
// A RawSymBander can return a blas64.SymmetricBand representation of the receiver.
// Changes to the blas64.SymmetricBand.Data slice will be reflected in the original
// matrix, changes to the N, K, Stride and Uplo fields will not.
type RawSymBander interface {
RawSymBand() blas64.SymmetricBand
}
// NewSymBandDense creates a new SymBand matrix with n rows and columns. If data == nil,
// a new slice is allocated for the backing slice. If len(data) == n*(k+1),
// data is used as the backing slice, and changes to the elements of the returned
// SymBandDense will be reflected in data. If neither of these is true, NewSymBandDense
// will panic. k must be at least zero and less than n, otherwise NewSymBandDense will panic.
//
// The data must be arranged in row-major order constructed by removing the zeros
// from the rows outside the band and aligning the diagonals. SymBandDense matrices
// are stored in the upper triangle. For example, the matrix
//
// 1 2 3 0 0 0
// 2 4 5 6 0 0
// 3 5 7 8 9 0
// 0 6 8 10 11 12
// 0 0 9 11 13 14
// 0 0 0 12 14 15
//
// becomes (* entries are never accessed)
//
// 1 2 3
// 4 5 6
// 7 8 9
// 10 11 12
// 13 14 *
// 15 * *
//
// which is passed to NewSymBandDense as []float64{1, 2, ..., 15, *, *, *} with k=2.
// Only the values in the band portion of the matrix are used.
func NewSymBandDense(n, k int, data []float64) *SymBandDense {
if n <= 0 || k < 0 {
if n == 0 {
panic(ErrZeroLength)
}
panic("mat: negative dimension")
}
if k+1 > n {
panic("mat: band out of range")
}
bc := k + 1
if data != nil && len(data) != n*bc {
panic(ErrShape)
}
if data == nil {
data = make([]float64, n*bc)
}
return &SymBandDense{
mat: blas64.SymmetricBand{
N: n,
K: k,
Stride: bc,
Uplo: blas.Upper,
Data: data,
},
}
}
// Dims returns the number of rows and columns in the matrix.
func (s *SymBandDense) Dims() (r, c int) {
return s.mat.N, s.mat.N
}
// SymmetricDim returns the size of the receiver.
func (s *SymBandDense) SymmetricDim() int {
return s.mat.N
}
// Bandwidth returns the bandwidths of the matrix.
func (s *SymBandDense) Bandwidth() (kl, ku int) {
return s.mat.K, s.mat.K
}
// SymBand returns the number of rows/columns in the matrix, and the size of
// the bandwidth.
func (s *SymBandDense) SymBand() (n, k int) {
return s.mat.N, s.mat.K
}
// T implements the Matrix interface. Symmetric matrices, by definition, are
// equal to their transpose, and this is a no-op.
func (s *SymBandDense) T() Matrix {
return s
}
// TBand implements the Banded interface.
func (s *SymBandDense) TBand() Banded {
return s
}
// RawSymBand returns the underlying blas64.SymBand used by the receiver.
// Changes to elements in the receiver following the call will be reflected
// in returned blas64.SymBand.
func (s *SymBandDense) RawSymBand() blas64.SymmetricBand {
return s.mat
}
// SetRawSymBand sets the underlying blas64.SymmetricBand used by the receiver.
// Changes to elements in the receiver following the call will be reflected
// in the input.
//
// The supplied SymmetricBand must use blas.Upper storage format.
func (s *SymBandDense) SetRawSymBand(mat blas64.SymmetricBand) {
if mat.Uplo != blas.Upper {
panic("mat: blas64.SymmetricBand does not have blas.Upper storage")
}
s.mat = mat
}
// IsEmpty returns whether the receiver is empty. Empty matrices can be the
// receiver for size-restricted operations. The receiver can be emptied using
// Reset.
func (s *SymBandDense) IsEmpty() bool {
return s.mat.Stride == 0
}
// Reset empties the matrix so that it can be reused as the
// receiver of a dimensionally restricted operation.
//
// Reset should not be used when the matrix shares backing data.
// See the Reseter interface for more information.
func (s *SymBandDense) Reset() {
s.mat.N = 0
s.mat.K = 0
s.mat.Stride = 0
s.mat.Uplo = 0
s.mat.Data = s.mat.Data[:0]
}
// Zero sets all of the matrix elements to zero.
func (s *SymBandDense) Zero() {
for i := 0; i < s.mat.N; i++ {
u := min(1+s.mat.K, s.mat.N-i)
zero(s.mat.Data[i*s.mat.Stride : i*s.mat.Stride+u])
}
}
// DiagView returns the diagonal as a matrix backed by the original data.
func (s *SymBandDense) DiagView() Diagonal {
n := s.mat.N
return &DiagDense{
mat: blas64.Vector{
N: n,
Inc: s.mat.Stride,
Data: s.mat.Data[:(n-1)*s.mat.Stride+1],
},
}
}
// DoNonZero calls the function fn for each of the non-zero elements of s. The function fn
// takes a row/column index and the element value of s at (i, j).
func (s *SymBandDense) DoNonZero(fn func(i, j int, v float64)) {
for i := 0; i < s.mat.N; i++ {
for j := max(0, i-s.mat.K); j < min(s.mat.N, i+s.mat.K+1); j++ {
v := s.at(i, j)
if v != 0 {
fn(i, j, v)
}
}
}
}
// DoRowNonZero calls the function fn for each of the non-zero elements of row i of s. The function fn
// takes a row/column index and the element value of s at (i, j).
func (s *SymBandDense) DoRowNonZero(i int, fn func(i, j int, v float64)) {
if i < 0 || s.mat.N <= i {
panic(ErrRowAccess)
}
for j := max(0, i-s.mat.K); j < min(s.mat.N, i+s.mat.K+1); j++ {
v := s.at(i, j)
if v != 0 {
fn(i, j, v)
}
}
}
// DoColNonZero calls the function fn for each of the non-zero elements of column j of s. The function fn
// takes a row/column index and the element value of s at (i, j).
func (s *SymBandDense) DoColNonZero(j int, fn func(i, j int, v float64)) {
if j < 0 || s.mat.N <= j {
panic(ErrColAccess)
}
for i := 0; i < s.mat.N; i++ {
if i-s.mat.K <= j && j < i+s.mat.K+1 {
v := s.at(i, j)
if v != 0 {
fn(i, j, v)
}
}
}
}
// Norm returns the specified norm of the receiver. Valid norms are:
//
// 1 - The maximum absolute column sum
// 2 - The Frobenius norm, the square root of the sum of the squares of the elements
// Inf - The maximum absolute row sum
//
// Norm will panic with ErrNormOrder if an illegal norm is specified and with
// ErrZeroLength if the matrix has zero size.
func (s *SymBandDense) Norm(norm float64) float64 {
if s.IsEmpty() {
panic(ErrZeroLength)
}
lnorm := normLapack(norm, false)
if lnorm == lapack.MaxColumnSum || lnorm == lapack.MaxRowSum {
work := getFloat64s(s.mat.N, false)
defer putFloat64s(work)
return lapack64.Lansb(lnorm, s.mat, work)
}
return lapack64.Lansb(lnorm, s.mat, nil)
}
// Trace returns the trace of the matrix.
//
// Trace will panic with ErrZeroLength if the matrix has zero size.
func (s *SymBandDense) Trace() float64 {
if s.IsEmpty() {
panic(ErrZeroLength)
}
rb := s.RawSymBand()
var tr float64
for i := 0; i < rb.N; i++ {
tr += rb.Data[i*rb.Stride]
}
return tr
}
// MulVecTo computes S⋅x storing the result into dst.
func (s *SymBandDense) MulVecTo(dst *VecDense, _ bool, x Vector) {
n := s.mat.N
if x.Len() != n {
panic(ErrShape)
}
dst.reuseAsNonZeroed(n)
xMat, _ := untransposeExtract(x)
if xVec, ok := xMat.(*VecDense); ok {
if dst != xVec {
dst.checkOverlap(xVec.mat)
blas64.Sbmv(1, s.mat, xVec.mat, 0, dst.mat)
} else {
xCopy := getVecDenseWorkspace(n, false)
xCopy.CloneFromVec(xVec)
blas64.Sbmv(1, s.mat, xCopy.mat, 0, dst.mat)
putVecDenseWorkspace(xCopy)
}
} else {
xCopy := getVecDenseWorkspace(n, false)
xCopy.CloneFromVec(x)
blas64.Sbmv(1, s.mat, xCopy.mat, 0, dst.mat)
putVecDenseWorkspace(xCopy)
}
}
|