1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
|
// Copyright ©2020 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/internal/asm/f64"
"gonum.org/v1/gonum/lapack/lapack64"
)
var (
tridiagDense *Tridiag
_ Matrix = tridiagDense
_ allMatrix = tridiagDense
_ denseMatrix = tridiagDense
_ Banded = tridiagDense
_ MutableBanded = tridiagDense
_ RawTridiagonaler = tridiagDense
)
// A RawTridiagonaler can return a lapack64.Tridiagonal representation of the
// receiver. Changes to the elements of DL, D, DU in lapack64.Tridiagonal will
// be reflected in the original matrix, changes to the N field will not.
type RawTridiagonaler interface {
RawTridiagonal() lapack64.Tridiagonal
}
// Tridiag represents a tridiagonal matrix by its three diagonals.
type Tridiag struct {
mat lapack64.Tridiagonal
}
// NewTridiag creates a new n×n tridiagonal matrix with the first sub-diagonal
// in dl, the main diagonal in d and the first super-diagonal in du. If all of
// dl, d, and du are nil, new backing slices will be allocated for them. If dl
// and du have length n-1 and d has length n, they will be used as backing
// slices, and changes to the elements of the returned Tridiag will be reflected
// in dl, d, du. If neither of these is true, NewTridiag will panic.
func NewTridiag(n int, dl, d, du []float64) *Tridiag {
if n <= 0 {
if n == 0 {
panic(ErrZeroLength)
}
panic(ErrNegativeDimension)
}
if dl != nil || d != nil || du != nil {
if len(dl) != n-1 || len(d) != n || len(du) != n-1 {
panic(ErrShape)
}
} else {
d = make([]float64, n)
if n > 1 {
dl = make([]float64, n-1)
du = make([]float64, n-1)
}
}
return &Tridiag{
mat: lapack64.Tridiagonal{
N: n,
DL: dl,
D: d,
DU: du,
},
}
}
// Dims returns the number of rows and columns in the matrix.
func (a *Tridiag) Dims() (r, c int) {
return a.mat.N, a.mat.N
}
// Bandwidth returns 1, 1 - the upper and lower bandwidths of the matrix.
func (a *Tridiag) Bandwidth() (kl, ku int) {
return 1, 1
}
// T performs an implicit transpose by returning the receiver inside a Transpose.
func (a *Tridiag) T() Matrix {
// An alternative would be to return the receiver with DL,DU swapped; the
// untranspose function would then always return false. With Transpose the
// diagonal swapping will be done in tridiagonal routines in lapack like
// lapack64.Gtsv or gonum.Dlagtm based on the trans parameter.
return Transpose{a}
}
// TBand performs an implicit transpose by returning the receiver inside a
// TransposeBand.
func (a *Tridiag) TBand() Banded {
// An alternative would be to return the receiver with DL,DU swapped; see
// explanation in T above.
return TransposeBand{a}
}
// RawTridiagonal returns the underlying lapack64.Tridiagonal used by the
// receiver. Changes to elements in the receiver following the call will be
// reflected in the returned matrix.
func (a *Tridiag) RawTridiagonal() lapack64.Tridiagonal {
return a.mat
}
// SetRawTridiagonal sets the underlying lapack64.Tridiagonal used by the
// receiver. Changes to elements in the receiver following the call will be
// reflected in the input.
func (a *Tridiag) SetRawTridiagonal(mat lapack64.Tridiagonal) {
a.mat = mat
}
// IsEmpty returns whether the receiver is empty. Empty matrices can be the
// receiver for size-restricted operations. The receiver can be zeroed using
// Reset.
func (a *Tridiag) IsEmpty() bool {
return a.mat.N == 0
}
// Reset empties the matrix so that it can be reused as the receiver of a
// dimensionally restricted operation.
//
// Reset should not be used when the matrix shares backing data. See the Reseter
// interface for more information.
func (a *Tridiag) Reset() {
a.mat.N = 0
a.mat.DL = a.mat.DL[:0]
a.mat.D = a.mat.D[:0]
a.mat.DU = a.mat.DU[:0]
}
// CloneFromTridiag makes a copy of the input Tridiag into the receiver,
// overwriting the previous value of the receiver. CloneFromTridiag does not
// place any restrictions on receiver shape.
func (a *Tridiag) CloneFromTridiag(from *Tridiag) {
n := from.mat.N
switch n {
case 0:
panic(ErrZeroLength)
case 1:
a.mat = lapack64.Tridiagonal{
N: 1,
DL: use(a.mat.DL, 0),
D: use(a.mat.D, 1),
DU: use(a.mat.DU, 0),
}
a.mat.D[0] = from.mat.D[0]
default:
a.mat = lapack64.Tridiagonal{
N: n,
DL: use(a.mat.DL, n-1),
D: use(a.mat.D, n),
DU: use(a.mat.DU, n-1),
}
copy(a.mat.DL, from.mat.DL)
copy(a.mat.D, from.mat.D)
copy(a.mat.DU, from.mat.DU)
}
}
// DiagView returns the diagonal as a matrix backed by the original data.
func (a *Tridiag) DiagView() Diagonal {
return &DiagDense{
mat: blas64.Vector{
N: a.mat.N,
Data: a.mat.D[:a.mat.N],
Inc: 1,
},
}
}
// Zero sets all of the matrix elements to zero.
func (a *Tridiag) Zero() {
zero(a.mat.DL)
zero(a.mat.D)
zero(a.mat.DU)
}
// Trace returns the trace of the matrix.
//
// Trace will panic with ErrZeroLength if the matrix has zero size.
func (a *Tridiag) Trace() float64 {
if a.IsEmpty() {
panic(ErrZeroLength)
}
return f64.Sum(a.mat.D)
}
// Norm returns the specified norm of the receiver. Valid norms are:
//
// 1 - The maximum absolute column sum
// 2 - The Frobenius norm, the square root of the sum of the squares of the elements
// Inf - The maximum absolute row sum
//
// Norm will panic with ErrNormOrder if an illegal norm is specified and with
// ErrZeroLength if the matrix has zero size.
func (a *Tridiag) Norm(norm float64) float64 {
if a.IsEmpty() {
panic(ErrZeroLength)
}
return lapack64.Langt(normLapack(norm, false), a.mat)
}
// MulVecTo computes A⋅x or Aᵀ⋅x storing the result into dst.
func (a *Tridiag) MulVecTo(dst *VecDense, trans bool, x Vector) {
n := a.mat.N
if x.Len() != n {
panic(ErrShape)
}
dst.reuseAsNonZeroed(n)
t := blas.NoTrans
if trans {
t = blas.Trans
}
xMat, _ := untransposeExtract(x)
if xVec, ok := xMat.(*VecDense); ok && dst != xVec {
dst.checkOverlap(xVec.mat)
lapack64.Lagtm(t, 1, a.mat, xVec.asGeneral(), 0, dst.asGeneral())
} else {
xCopy := getVecDenseWorkspace(n, false)
xCopy.CloneFromVec(x)
lapack64.Lagtm(t, 1, a.mat, xCopy.asGeneral(), 0, dst.asGeneral())
putVecDenseWorkspace(xCopy)
}
}
// SolveTo solves a tridiagonal system A⋅X = B or Aᵀ⋅X = B where A is an
// n×n tridiagonal matrix represented by the receiver and B is a given n×nrhs
// matrix. If A is non-singular, the result will be stored into dst and nil will
// be returned. If A is singular, the contents of dst will be undefined and a
// Condition error will be returned.
func (a *Tridiag) SolveTo(dst *Dense, trans bool, b Matrix) error {
n, nrhs := b.Dims()
if n != a.mat.N {
panic(ErrShape)
}
dst.reuseAsNonZeroed(n, nrhs)
bU, bTrans := untranspose(b)
if dst == bU {
if bTrans {
work := getDenseWorkspace(n, nrhs, false)
defer putDenseWorkspace(work)
work.Copy(b)
dst.Copy(work)
}
} else {
if rm, ok := bU.(RawMatrixer); ok {
dst.checkOverlap(rm.RawMatrix())
}
dst.Copy(b)
}
var aCopy Tridiag
aCopy.CloneFromTridiag(a)
var ok bool
if trans {
ok = lapack64.Gtsv(blas.Trans, aCopy.mat, dst.mat)
} else {
ok = lapack64.Gtsv(blas.NoTrans, aCopy.mat, dst.mat)
}
if !ok {
return Condition(math.Inf(1))
}
return nil
}
// SolveVecTo solves a tridiagonal system A⋅X = B or Aᵀ⋅X = B where A is an
// n×n tridiagonal matrix represented by the receiver and b is a given n-vector.
// If A is non-singular, the result will be stored into dst and nil will be
// returned. If A is singular, the contents of dst will be undefined and a
// Condition error will be returned.
func (a *Tridiag) SolveVecTo(dst *VecDense, trans bool, b Vector) error {
n, nrhs := b.Dims()
if n != a.mat.N || nrhs != 1 {
panic(ErrShape)
}
if b, ok := b.(RawVectorer); ok && dst != b {
dst.checkOverlap(b.RawVector())
}
dst.reuseAsNonZeroed(n)
if dst != b {
dst.CopyVec(b)
}
var aCopy Tridiag
aCopy.CloneFromTridiag(a)
var ok bool
if trans {
ok = lapack64.Gtsv(blas.Trans, aCopy.mat, dst.asGeneral())
} else {
ok = lapack64.Gtsv(blas.NoTrans, aCopy.mat, dst.asGeneral())
}
if !ok {
return Condition(math.Inf(1))
}
return nil
}
// DoNonZero calls the function fn for each of the non-zero elements of A. The
// function fn takes a row/column index and the element value of A at (i,j).
func (a *Tridiag) DoNonZero(fn func(i, j int, v float64)) {
for i, aij := range a.mat.DU {
if aij != 0 {
fn(i, i+1, aij)
}
}
for i, aii := range a.mat.D {
if aii != 0 {
fn(i, i, aii)
}
}
for i, aij := range a.mat.DL {
if aij != 0 {
fn(i+1, i, aij)
}
}
}
// DoRowNonZero calls the function fn for each of the non-zero elements of row i
// of A. The function fn takes a row/column index and the element value of A at
// (i,j).
func (a *Tridiag) DoRowNonZero(i int, fn func(i, j int, v float64)) {
n := a.mat.N
if uint(i) >= uint(n) {
panic(ErrRowAccess)
}
if n == 1 {
v := a.mat.D[0]
if v != 0 {
fn(0, 0, v)
}
return
}
switch i {
case 0:
v := a.mat.D[0]
if v != 0 {
fn(i, 0, v)
}
v = a.mat.DU[0]
if v != 0 {
fn(i, 1, v)
}
case n - 1:
v := a.mat.DL[n-2]
if v != 0 {
fn(n-1, n-2, v)
}
v = a.mat.D[n-1]
if v != 0 {
fn(n-1, n-1, v)
}
default:
v := a.mat.DL[i-1]
if v != 0 {
fn(i, i-1, v)
}
v = a.mat.D[i]
if v != 0 {
fn(i, i, v)
}
v = a.mat.DU[i]
if v != 0 {
fn(i, i+1, v)
}
}
}
// DoColNonZero calls the function fn for each of the non-zero elements of
// column j of A. The function fn takes a row/column index and the element value
// of A at (i, j).
func (a *Tridiag) DoColNonZero(j int, fn func(i, j int, v float64)) {
n := a.mat.N
if uint(j) >= uint(n) {
panic(ErrColAccess)
}
if n == 1 {
v := a.mat.D[0]
if v != 0 {
fn(0, 0, v)
}
return
}
switch j {
case 0:
v := a.mat.D[0]
if v != 0 {
fn(0, 0, v)
}
v = a.mat.DL[0]
if v != 0 {
fn(1, 0, v)
}
case n - 1:
v := a.mat.DU[n-2]
if v != 0 {
fn(n-2, n-1, v)
}
v = a.mat.D[n-1]
if v != 0 {
fn(n-1, n-1, v)
}
default:
v := a.mat.DU[j-1]
if v != 0 {
fn(j-1, j, v)
}
v = a.mat.D[j]
if v != 0 {
fn(j, j, v)
}
v = a.mat.DL[j]
if v != 0 {
fn(j+1, j, v)
}
}
}
|