1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
|
// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/internal/asm/f64"
)
var (
vector *VecDense
_ Matrix = vector
_ allMatrix = vector
_ Vector = vector
_ Reseter = vector
_ MutableVector = vector
)
// Vector is a vector.
type Vector interface {
Matrix
AtVec(int) float64
Len() int
}
// A MutableVector can set elements of a vector.
type MutableVector interface {
Vector
SetVec(i int, v float64)
}
// TransposeVec is a type for performing an implicit transpose of a Vector.
// It implements the Vector interface, returning values from the transpose
// of the vector within.
type TransposeVec struct {
Vector Vector
}
// At returns the value of the element at row i and column j of the transposed
// matrix, that is, row j and column i of the Vector field.
func (t TransposeVec) At(i, j int) float64 {
return t.Vector.At(j, i)
}
// AtVec returns the element at position i. It panics if i is out of bounds.
func (t TransposeVec) AtVec(i int) float64 {
return t.Vector.AtVec(i)
}
// Dims returns the dimensions of the transposed vector.
func (t TransposeVec) Dims() (r, c int) {
c, r = t.Vector.Dims()
return r, c
}
// T performs an implicit transpose by returning the Vector field.
func (t TransposeVec) T() Matrix {
return t.Vector
}
// Len returns the number of columns in the vector.
func (t TransposeVec) Len() int {
return t.Vector.Len()
}
// TVec performs an implicit transpose by returning the Vector field.
func (t TransposeVec) TVec() Vector {
return t.Vector
}
// Untranspose returns the Vector field.
func (t TransposeVec) Untranspose() Matrix {
return t.Vector
}
func (t TransposeVec) UntransposeVec() Vector {
return t.Vector
}
// VecDense represents a column vector.
type VecDense struct {
mat blas64.Vector
// A BLAS vector can have a negative increment, but allowing this
// in the mat type complicates a lot of code, and doesn't gain anything.
// VecDense must have positive increment in this package.
}
// NewVecDense creates a new VecDense of length n. If data == nil,
// a new slice is allocated for the backing slice. If len(data) == n, data is
// used as the backing slice, and changes to the elements of the returned VecDense
// will be reflected in data. If neither of these is true, NewVecDense will panic.
// NewVecDense will panic if n is zero.
func NewVecDense(n int, data []float64) *VecDense {
if n <= 0 {
if n == 0 {
panic(ErrZeroLength)
}
panic("mat: negative dimension")
}
if len(data) != n && data != nil {
panic(ErrShape)
}
if data == nil {
data = make([]float64, n)
}
return &VecDense{
mat: blas64.Vector{
N: n,
Inc: 1,
Data: data,
},
}
}
// SliceVec returns a new Vector that shares backing data with the receiver.
// The returned matrix starts at i of the receiver and extends k-i elements.
// SliceVec panics with ErrIndexOutOfRange if the slice is outside the capacity
// of the receiver.
func (v *VecDense) SliceVec(i, k int) Vector {
return v.sliceVec(i, k)
}
func (v *VecDense) sliceVec(i, k int) *VecDense {
if i < 0 || k <= i || v.Cap() < k {
panic(ErrIndexOutOfRange)
}
return &VecDense{
mat: blas64.Vector{
N: k - i,
Inc: v.mat.Inc,
Data: v.mat.Data[i*v.mat.Inc : (k-1)*v.mat.Inc+1],
},
}
}
// Dims returns the number of rows and columns in the matrix. Columns is always 1
// for a non-Reset vector.
func (v *VecDense) Dims() (r, c int) {
if v.IsEmpty() {
return 0, 0
}
return v.mat.N, 1
}
// Caps returns the number of rows and columns in the backing matrix. Columns is always 1
// for a non-Reset vector.
func (v *VecDense) Caps() (r, c int) {
if v.IsEmpty() {
return 0, 0
}
return v.Cap(), 1
}
// Len returns the length of the vector.
func (v *VecDense) Len() int {
return v.mat.N
}
// Cap returns the capacity of the vector.
func (v *VecDense) Cap() int {
if v.IsEmpty() {
return 0
}
return (cap(v.mat.Data)-1)/v.mat.Inc + 1
}
// T performs an implicit transpose by returning the receiver inside a Transpose.
func (v *VecDense) T() Matrix {
return Transpose{v}
}
// TVec performs an implicit transpose by returning the receiver inside a TransposeVec.
func (v *VecDense) TVec() Vector {
return TransposeVec{v}
}
// Reset empties the matrix so that it can be reused as the
// receiver of a dimensionally restricted operation.
//
// Reset should not be used when the matrix shares backing data.
// See the Reseter interface for more information.
func (v *VecDense) Reset() {
// No change of Inc or N to 0 may be
// made unless both are set to 0.
v.mat.Inc = 0
v.mat.N = 0
v.mat.Data = v.mat.Data[:0]
}
// Zero sets all of the matrix elements to zero.
func (v *VecDense) Zero() {
for i := 0; i < v.mat.N; i++ {
v.mat.Data[v.mat.Inc*i] = 0
}
}
// CloneFromVec makes a copy of a into the receiver, overwriting the previous value
// of the receiver.
func (v *VecDense) CloneFromVec(a Vector) {
if v == a {
return
}
n := a.Len()
v.mat = blas64.Vector{
N: n,
Inc: 1,
Data: use(v.mat.Data, n),
}
if r, ok := a.(RawVectorer); ok {
blas64.Copy(r.RawVector(), v.mat)
return
}
for i := 0; i < a.Len(); i++ {
v.setVec(i, a.AtVec(i))
}
}
// VecDenseCopyOf returns a newly allocated copy of the elements of a.
func VecDenseCopyOf(a Vector) *VecDense {
v := &VecDense{}
v.CloneFromVec(a)
return v
}
// RawVector returns the underlying blas64.Vector used by the receiver.
// Changes to elements in the receiver following the call will be reflected
// in returned blas64.Vector.
func (v *VecDense) RawVector() blas64.Vector {
return v.mat
}
// SetRawVector sets the underlying blas64.Vector used by the receiver.
// Changes to elements in the receiver following the call will be reflected
// in the input.
func (v *VecDense) SetRawVector(a blas64.Vector) {
v.mat = a
}
// CopyVec makes a copy of elements of a into the receiver. It is similar to the
// built-in copy; it copies as much as the overlap between the two vectors and
// returns the number of elements it copied.
func (v *VecDense) CopyVec(a Vector) int {
n := min(v.Len(), a.Len())
if v == a {
return n
}
if r, ok := a.(RawVectorer); ok {
src := r.RawVector()
src.N = n
dst := v.mat
dst.N = n
blas64.Copy(src, dst)
return n
}
for i := 0; i < n; i++ {
v.setVec(i, a.AtVec(i))
}
return n
}
// Norm returns the specified norm of the receiver. Valid norms are:
//
// 1 - The sum of the element magnitudes
// 2 - The Euclidean norm, the square root of the sum of the squares of the elements
// Inf - The maximum element magnitude
//
// Norm will panic with ErrNormOrder if an illegal norm is specified and with
// ErrZeroLength if the vector has zero size.
func (v *VecDense) Norm(norm float64) float64 {
if v.IsEmpty() {
panic(ErrZeroLength)
}
switch norm {
default:
panic(ErrNormOrder)
case 1:
return blas64.Asum(v.mat)
case 2:
return blas64.Nrm2(v.mat)
case math.Inf(1):
imax := blas64.Iamax(v.mat)
return math.Abs(v.at(imax))
}
}
// ScaleVec scales the vector a by alpha, placing the result in the receiver.
func (v *VecDense) ScaleVec(alpha float64, a Vector) {
n := a.Len()
if v == a {
if v.mat.Inc == 1 {
f64.ScalUnitary(alpha, v.mat.Data)
return
}
f64.ScalInc(alpha, v.mat.Data, uintptr(n), uintptr(v.mat.Inc))
return
}
v.reuseAsNonZeroed(n)
if rv, ok := a.(RawVectorer); ok {
mat := rv.RawVector()
v.checkOverlap(mat)
if v.mat.Inc == 1 && mat.Inc == 1 {
f64.ScalUnitaryTo(v.mat.Data, alpha, mat.Data)
return
}
f64.ScalIncTo(v.mat.Data, uintptr(v.mat.Inc),
alpha, mat.Data, uintptr(n), uintptr(mat.Inc))
return
}
for i := 0; i < n; i++ {
v.setVec(i, alpha*a.AtVec(i))
}
}
// AddScaledVec adds the vectors a and alpha*b, placing the result in the receiver.
func (v *VecDense) AddScaledVec(a Vector, alpha float64, b Vector) {
if alpha == 1 {
v.AddVec(a, b)
return
}
if alpha == -1 {
v.SubVec(a, b)
return
}
ar := a.Len()
br := b.Len()
if ar != br {
panic(ErrShape)
}
var amat, bmat blas64.Vector
fast := true
aU, _ := untransposeExtract(a)
if rv, ok := aU.(*VecDense); ok {
amat = rv.mat
if v != a {
v.checkOverlap(amat)
}
} else {
fast = false
}
bU, _ := untransposeExtract(b)
if rv, ok := bU.(*VecDense); ok {
bmat = rv.mat
if v != b {
v.checkOverlap(bmat)
}
} else {
fast = false
}
v.reuseAsNonZeroed(ar)
switch {
case alpha == 0: // v <- a
if v == a {
return
}
v.CopyVec(a)
case v == a && v == b: // v <- v + alpha * v = (alpha + 1) * v
blas64.Scal(alpha+1, v.mat)
case !fast: // v <- a + alpha * b without blas64 support.
for i := 0; i < ar; i++ {
v.setVec(i, a.AtVec(i)+alpha*b.AtVec(i))
}
case v == a && v != b: // v <- v + alpha * b
if v.mat.Inc == 1 && bmat.Inc == 1 {
// Fast path for a common case.
f64.AxpyUnitaryTo(v.mat.Data, alpha, bmat.Data, amat.Data)
} else {
f64.AxpyInc(alpha, bmat.Data, v.mat.Data,
uintptr(ar), uintptr(bmat.Inc), uintptr(v.mat.Inc), 0, 0)
}
default: // v <- a + alpha * b or v <- a + alpha * v
if v.mat.Inc == 1 && amat.Inc == 1 && bmat.Inc == 1 {
// Fast path for a common case.
f64.AxpyUnitaryTo(v.mat.Data, alpha, bmat.Data, amat.Data)
} else {
f64.AxpyIncTo(v.mat.Data, uintptr(v.mat.Inc), 0,
alpha, bmat.Data, amat.Data,
uintptr(ar), uintptr(bmat.Inc), uintptr(amat.Inc), 0, 0)
}
}
}
// AddVec adds the vectors a and b, placing the result in the receiver.
func (v *VecDense) AddVec(a, b Vector) {
ar := a.Len()
br := b.Len()
if ar != br {
panic(ErrShape)
}
v.reuseAsNonZeroed(ar)
aU, _ := untransposeExtract(a)
bU, _ := untransposeExtract(b)
if arv, ok := aU.(*VecDense); ok {
if brv, ok := bU.(*VecDense); ok {
amat := arv.mat
bmat := brv.mat
if v != a {
v.checkOverlap(amat)
}
if v != b {
v.checkOverlap(bmat)
}
if v.mat.Inc == 1 && amat.Inc == 1 && bmat.Inc == 1 {
// Fast path for a common case.
f64.AxpyUnitaryTo(v.mat.Data, 1, bmat.Data, amat.Data)
return
}
f64.AxpyIncTo(v.mat.Data, uintptr(v.mat.Inc), 0,
1, bmat.Data, amat.Data,
uintptr(ar), uintptr(bmat.Inc), uintptr(amat.Inc), 0, 0)
return
}
}
for i := 0; i < ar; i++ {
v.setVec(i, a.AtVec(i)+b.AtVec(i))
}
}
// SubVec subtracts the vector b from a, placing the result in the receiver.
func (v *VecDense) SubVec(a, b Vector) {
ar := a.Len()
br := b.Len()
if ar != br {
panic(ErrShape)
}
v.reuseAsNonZeroed(ar)
aU, _ := untransposeExtract(a)
bU, _ := untransposeExtract(b)
if arv, ok := aU.(*VecDense); ok {
if brv, ok := bU.(*VecDense); ok {
amat := arv.mat
bmat := brv.mat
if v != a {
v.checkOverlap(amat)
}
if v != b {
v.checkOverlap(bmat)
}
if v.mat.Inc == 1 && amat.Inc == 1 && bmat.Inc == 1 {
// Fast path for a common case.
f64.AxpyUnitaryTo(v.mat.Data, -1, bmat.Data, amat.Data)
return
}
f64.AxpyIncTo(v.mat.Data, uintptr(v.mat.Inc), 0,
-1, bmat.Data, amat.Data,
uintptr(ar), uintptr(bmat.Inc), uintptr(amat.Inc), 0, 0)
return
}
}
for i := 0; i < ar; i++ {
v.setVec(i, a.AtVec(i)-b.AtVec(i))
}
}
// MulElemVec performs element-wise multiplication of a and b, placing the result
// in the receiver.
func (v *VecDense) MulElemVec(a, b Vector) {
ar := a.Len()
br := b.Len()
if ar != br {
panic(ErrShape)
}
v.reuseAsNonZeroed(ar)
aU, _ := untransposeExtract(a)
bU, _ := untransposeExtract(b)
if arv, ok := aU.(*VecDense); ok {
if brv, ok := bU.(*VecDense); ok {
amat := arv.mat
bmat := brv.mat
if v != a {
v.checkOverlap(amat)
}
if v != b {
v.checkOverlap(bmat)
}
if v.mat.Inc == 1 && amat.Inc == 1 && bmat.Inc == 1 {
// Fast path for a common case.
for i, a := range amat.Data {
v.mat.Data[i] = a * bmat.Data[i]
}
return
}
var ia, ib int
for i := 0; i < ar; i++ {
v.setVec(i, amat.Data[ia]*bmat.Data[ib])
ia += amat.Inc
ib += bmat.Inc
}
return
}
}
for i := 0; i < ar; i++ {
v.setVec(i, a.AtVec(i)*b.AtVec(i))
}
}
// DivElemVec performs element-wise division of a by b, placing the result
// in the receiver.
func (v *VecDense) DivElemVec(a, b Vector) {
ar := a.Len()
br := b.Len()
if ar != br {
panic(ErrShape)
}
v.reuseAsNonZeroed(ar)
aU, _ := untransposeExtract(a)
bU, _ := untransposeExtract(b)
if arv, ok := aU.(*VecDense); ok {
if brv, ok := bU.(*VecDense); ok {
amat := arv.mat
bmat := brv.mat
if v != a {
v.checkOverlap(amat)
}
if v != b {
v.checkOverlap(bmat)
}
if v.mat.Inc == 1 && amat.Inc == 1 && bmat.Inc == 1 {
// Fast path for a common case.
for i, a := range amat.Data {
v.setVec(i, a/bmat.Data[i])
}
return
}
var ia, ib int
for i := 0; i < ar; i++ {
v.setVec(i, amat.Data[ia]/bmat.Data[ib])
ia += amat.Inc
ib += bmat.Inc
}
}
}
for i := 0; i < ar; i++ {
v.setVec(i, a.AtVec(i)/b.AtVec(i))
}
}
// MulVec computes a * b. The result is stored into the receiver.
// MulVec panics if the number of columns in a does not equal the number of rows in b
// or if the number of columns in b does not equal 1.
func (v *VecDense) MulVec(a Matrix, b Vector) {
r, c := a.Dims()
br, bc := b.Dims()
if c != br || bc != 1 {
panic(ErrShape)
}
aU, trans := untransposeExtract(a)
var bmat blas64.Vector
fast := true
bU, _ := untransposeExtract(b)
if rv, ok := bU.(*VecDense); ok {
bmat = rv.mat
if v != b {
v.checkOverlap(bmat)
}
} else {
fast = false
}
v.reuseAsNonZeroed(r)
var restore func()
if v == aU {
v, restore = v.isolatedWorkspace(aU.(*VecDense))
defer restore()
} else if v == b {
v, restore = v.isolatedWorkspace(b)
defer restore()
}
// TODO(kortschak): Improve the non-fast paths.
switch aU := aU.(type) {
case Vector:
if b.Len() == 1 {
// {n,1} x {1,1}
v.ScaleVec(b.AtVec(0), aU)
return
}
// {1,n} x {n,1}
if fast {
if rv, ok := aU.(*VecDense); ok {
amat := rv.mat
if v != aU {
v.checkOverlap(amat)
}
if amat.Inc == 1 && bmat.Inc == 1 {
// Fast path for a common case.
v.setVec(0, f64.DotUnitary(amat.Data, bmat.Data))
return
}
v.setVec(0, f64.DotInc(amat.Data, bmat.Data,
uintptr(c), uintptr(amat.Inc), uintptr(bmat.Inc), 0, 0))
return
}
}
var sum float64
for i := 0; i < c; i++ {
sum += aU.AtVec(i) * b.AtVec(i)
}
v.setVec(0, sum)
return
case *SymBandDense:
if fast {
aU.checkOverlap(v.asGeneral())
blas64.Sbmv(1, aU.mat, bmat, 0, v.mat)
return
}
case *SymDense:
if fast {
aU.checkOverlap(v.asGeneral())
blas64.Symv(1, aU.mat, bmat, 0, v.mat)
return
}
case *TriDense:
if fast {
v.CopyVec(b)
aU.checkOverlap(v.asGeneral())
ta := blas.NoTrans
if trans {
ta = blas.Trans
}
blas64.Trmv(ta, aU.mat, v.mat)
return
}
case *Dense:
if fast {
aU.checkOverlap(v.asGeneral())
t := blas.NoTrans
if trans {
t = blas.Trans
}
blas64.Gemv(t, 1, aU.mat, bmat, 0, v.mat)
return
}
default:
if fast {
for i := 0; i < r; i++ {
var f float64
for j := 0; j < c; j++ {
f += a.At(i, j) * bmat.Data[j*bmat.Inc]
}
v.setVec(i, f)
}
return
}
}
for i := 0; i < r; i++ {
var f float64
for j := 0; j < c; j++ {
f += a.At(i, j) * b.AtVec(j)
}
v.setVec(i, f)
}
}
// ReuseAsVec changes the receiver if it IsEmpty() to be of size n×1.
//
// ReuseAsVec re-uses the backing data slice if it has sufficient capacity,
// otherwise a new slice is allocated. The backing data is zero on return.
//
// ReuseAsVec panics if the receiver is not empty, and panics if
// the input size is less than one. To empty the receiver for re-use,
// Reset should be used.
func (v *VecDense) ReuseAsVec(n int) {
if n <= 0 {
if n == 0 {
panic(ErrZeroLength)
}
panic(ErrNegativeDimension)
}
if !v.IsEmpty() {
panic(ErrReuseNonEmpty)
}
v.reuseAsZeroed(n)
}
// reuseAsNonZeroed resizes an empty vector to a r×1 vector,
// or checks that a non-empty matrix is r×1.
func (v *VecDense) reuseAsNonZeroed(r int) {
// reuseAsNonZeroed must be kept in sync with reuseAsZeroed.
if r == 0 {
panic(ErrZeroLength)
}
if v.IsEmpty() {
v.mat = blas64.Vector{
N: r,
Inc: 1,
Data: use(v.mat.Data, r),
}
return
}
if r != v.mat.N {
panic(ErrShape)
}
}
// reuseAsZeroed resizes an empty vector to a r×1 vector,
// or checks that a non-empty matrix is r×1.
func (v *VecDense) reuseAsZeroed(r int) {
// reuseAsZeroed must be kept in sync with reuseAsNonZeroed.
if r == 0 {
panic(ErrZeroLength)
}
if v.IsEmpty() {
v.mat = blas64.Vector{
N: r,
Inc: 1,
Data: useZeroed(v.mat.Data, r),
}
return
}
if r != v.mat.N {
panic(ErrShape)
}
v.Zero()
}
// IsEmpty returns whether the receiver is empty. Empty matrices can be the
// receiver for size-restricted operations. The receiver can be emptied using
// Reset.
func (v *VecDense) IsEmpty() bool {
// It must be the case that v.Dims() returns
// zeros in this case. See comment in Reset().
return v.mat.Inc == 0
}
func (v *VecDense) isolatedWorkspace(a Vector) (n *VecDense, restore func()) {
l := a.Len()
if l == 0 {
panic(ErrZeroLength)
}
n = getVecDenseWorkspace(l, false)
return n, func() {
v.CopyVec(n)
putVecDenseWorkspace(n)
}
}
// asDense returns a Dense representation of the receiver with the same
// underlying data.
func (v *VecDense) asDense() *Dense {
return &Dense{
mat: v.asGeneral(),
capRows: v.mat.N,
capCols: 1,
}
}
// asGeneral returns a blas64.General representation of the receiver with the
// same underlying data.
func (v *VecDense) asGeneral() blas64.General {
return blas64.General{
Rows: v.mat.N,
Cols: 1,
Stride: v.mat.Inc,
Data: v.mat.Data,
}
}
// ColViewOf reflects the column j of the RawMatrixer m, into the receiver
// backed by the same underlying data. The receiver must either be empty
// have length equal to the number of rows of m.
func (v *VecDense) ColViewOf(m RawMatrixer, j int) {
rm := m.RawMatrix()
if j >= rm.Cols || j < 0 {
panic(ErrColAccess)
}
if !v.IsEmpty() && v.mat.N != rm.Rows {
panic(ErrShape)
}
v.mat.Inc = rm.Stride
v.mat.Data = rm.Data[j : (rm.Rows-1)*rm.Stride+j+1]
v.mat.N = rm.Rows
}
// RowViewOf reflects the row i of the RawMatrixer m, into the receiver
// backed by the same underlying data. The receiver must either be
// empty or have length equal to the number of columns of m.
func (v *VecDense) RowViewOf(m RawMatrixer, i int) {
rm := m.RawMatrix()
if i >= rm.Rows || i < 0 {
panic(ErrRowAccess)
}
if !v.IsEmpty() && v.mat.N != rm.Cols {
panic(ErrShape)
}
v.mat.Inc = 1
v.mat.Data = rm.Data[i*rm.Stride : i*rm.Stride+rm.Cols]
v.mat.N = rm.Cols
}
// Permute rearranges the elements of the n-vector v in the receiver as
// specified by the permutation p[0],p[1],...,p[n-1] of the integers 0,...,n-1.
//
// If inverse is false, the given permutation is applied:
//
// v[p[i]] is moved to v[i] for i=0,1,...,n-1.
//
// If inverse is true, the inverse permutation is applied:
//
// v[i] is moved to v[p[i]] for i=0,1,...,n-1.
//
// p must have length n, otherwise Permute will panic.
func (v *VecDense) Permute(p []int, inverse bool) {
v.asDense().PermuteRows(p, inverse)
}
|