1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mathext
import (
"math"
)
// EllipticRF computes the symmetric elliptic integral R_F(x,y,z):
//
// R_F(x,y,z) = (1/2)\int_{0}^{\infty}{1/s(t)} dt,
// s(t) = \sqrt{(t+x)(t+y)(t+z)}.
//
// The arguments x, y, z must satisfy the following conditions, otherwise the function returns math.NaN():
//
// 0 ≤ x,y,z ≤ upper,
// lower ≤ x+y,y+z,z+x,
//
// where:
//
// lower = 5/(2^1022) = 1.112536929253601e-307,
// upper = (2^1022)/5 = 8.988465674311580e+306.
//
// The definition of the symmetric elliptic integral R_F can be found in NIST
// Digital Library of Mathematical Functions (http://dlmf.nist.gov/19.16.E1).
func EllipticRF(x, y, z float64) float64 {
// The original Fortran code was published as Algorithm 577 in ACM TOMS (http://doi.org/10.1145/355958.355970).
// This code is also available as a part of SLATEC Common Mathematical Library (http://netlib.org/slatec/index.html). Later, Carlson described
// an improved version in http://dx.doi.org/10.1007/BF02198293 (also available at https://arxiv.org/abs/math/9409227).
const (
lower = 5.0 / (1 << 256) / (1 << 256) / (1 << 256) / (1 << 254) // 5*2^-1022
upper = 1 / lower
tol = 1.2674918778210762260320167734407048051023273568443e-02 // (3ε)^(1/8)
)
if x < 0 || y < 0 || z < 0 || math.IsNaN(x) || math.IsNaN(y) || math.IsNaN(z) {
return math.NaN()
}
if upper < x || upper < y || upper < z {
return math.NaN()
}
if x+y < lower || y+z < lower || z+x < lower {
return math.NaN()
}
A0 := (x + y + z) / 3
An := A0
Q := math.Max(math.Max(math.Abs(A0-x), math.Abs(A0-y)), math.Abs(A0-z)) / tol
xn, yn, zn := x, y, z
mul := 1.0
for Q >= mul*math.Abs(An) {
xnsqrt, ynsqrt, znsqrt := math.Sqrt(xn), math.Sqrt(yn), math.Sqrt(zn)
lambda := xnsqrt*ynsqrt + ynsqrt*znsqrt + znsqrt*xnsqrt
An = (An + lambda) * 0.25
xn = (xn + lambda) * 0.25
yn = (yn + lambda) * 0.25
zn = (zn + lambda) * 0.25
mul *= 4
}
X := (A0 - x) / (mul * An)
Y := (A0 - y) / (mul * An)
Z := -(X + Y)
E2 := X*Y - Z*Z
E3 := X * Y * Z
// http://dlmf.nist.gov/19.36.E1
return (1 - 1/10.0*E2 + 1/14.0*E3 + 1/24.0*E2*E2 - 3/44.0*E2*E3 - 5/208.0*E2*E2*E2 + 3/104.0*E3*E3 + 1/16.0*E2*E2*E3) / math.Sqrt(An)
}
// EllipticRD computes the symmetric elliptic integral R_D(x,y,z):
//
// R_D(x,y,z) = (1/2)\int_{0}^{\infty}{1/(s(t)(t+z))} dt,
// s(t) = \sqrt{(t+x)(t+y)(t+z)}.
//
// The arguments x, y, z must satisfy the following conditions, otherwise the function returns math.NaN():
//
// 0 ≤ x,y ≤ upper,
// lower ≤ z ≤ upper,
// lower ≤ x+y,
//
// where:
//
// lower = (5/(2^1022))^(1/3) = 4.809554074311679e-103,
// upper = ((2^1022)/5)^(1/3) = 2.079194837087086e+102.
//
// The definition of the symmetric elliptic integral R_D can be found in NIST
// Digital Library of Mathematical Functions (http://dlmf.nist.gov/19.16.E5).
func EllipticRD(x, y, z float64) float64 {
// The original Fortran code was published as Algorithm 577 in ACM TOMS (http://doi.org/10.1145/355958.355970).
// This code is also available as a part of SLATEC Common Mathematical Library (http://netlib.org/slatec/index.html). Later, Carlson described
// an improved version in http://dx.doi.org/10.1007/BF02198293 (also available at https://arxiv.org/abs/math/9409227).
const (
lower = 4.8095540743116787026618007863123676393525016818363e-103 // (5*2^-1022)^(1/3)
upper = 1 / lower
tol = 9.0351169339315770474760122547068324993857488849382e-03 // (ε/5)^(1/8)
)
if x < 0 || y < 0 || math.IsNaN(x) || math.IsNaN(y) || math.IsNaN(z) {
return math.NaN()
}
if upper < x || upper < y || upper < z {
return math.NaN()
}
if x+y < lower || z < lower {
return math.NaN()
}
A0 := (x + y + 3*z) / 5
An := A0
Q := math.Max(math.Max(math.Abs(A0-x), math.Abs(A0-y)), math.Abs(A0-z)) / tol
xn, yn, zn := x, y, z
mul, s := 1.0, 0.0
for Q >= mul*math.Abs(An) {
xnsqrt, ynsqrt, znsqrt := math.Sqrt(xn), math.Sqrt(yn), math.Sqrt(zn)
lambda := xnsqrt*ynsqrt + ynsqrt*znsqrt + znsqrt*xnsqrt
s += 1 / (mul * znsqrt * (zn + lambda))
An = (An + lambda) * 0.25
xn = (xn + lambda) * 0.25
yn = (yn + lambda) * 0.25
zn = (zn + lambda) * 0.25
mul *= 4
}
X := (A0 - x) / (mul * An)
Y := (A0 - y) / (mul * An)
Z := -(X + Y) / 3
E2 := X*Y - 6*Z*Z
E3 := (3*X*Y - 8*Z*Z) * Z
E4 := 3 * (X*Y - Z*Z) * Z * Z
E5 := X * Y * Z * Z * Z
// http://dlmf.nist.gov/19.36.E2
return (1-3/14.0*E2+1/6.0*E3+9/88.0*E2*E2-3/22.0*E4-9/52.0*E2*E3+3/26.0*E5-1/16.0*E2*E2*E2+3/40.0*E3*E3+3/20.0*E2*E4+45/272.0*E2*E2*E3-9/68.0*(E3*E4+E2*E5))/(mul*An*math.Sqrt(An)) + 3*s
}
// EllipticF computes the Legendre's elliptic integral of the 1st kind F(phi,m), 0≤m<1:
//
// F(\phi,m) = \int_{0}^{\phi} 1 / \sqrt{1-m\sin^2(\theta)} d\theta
//
// Legendre's elliptic integrals can be expressed as symmetric elliptic integrals, in this case:
//
// F(\phi,m) = \sin\phi R_F(\cos^2\phi,1-m\sin^2\phi,1)
//
// The definition of F(phi,k) where k=sqrt(m) can be found in NIST Digital Library of Mathematical
// Functions (http://dlmf.nist.gov/19.2.E4).
func EllipticF(phi, m float64) float64 {
s, c := math.Sincos(phi)
return s * EllipticRF(c*c, 1-m*s*s, 1)
}
// EllipticE computes the Legendre's elliptic integral of the 2nd kind E(phi,m), 0≤m<1:
//
// E(\phi,m) = \int_{0}^{\phi} \sqrt{1-m\sin^2(\theta)} d\theta
//
// Legendre's elliptic integrals can be expressed as symmetric elliptic integrals, in this case:
//
// E(\phi,m) = \sin\phi R_F(\cos^2\phi,1-m\sin^2\phi,1)-(m/3)\sin^3\phi R_D(\cos^2\phi,1-m\sin^2\phi,1)
//
// The definition of E(phi,k) where k=sqrt(m) can be found in NIST Digital Library of Mathematical
// Functions (http://dlmf.nist.gov/19.2.E5).
func EllipticE(phi, m float64) float64 {
s, c := math.Sincos(phi)
x, y := c*c, 1-m*s*s
return s * (EllipticRF(x, y, 1) - (m/3)*s*s*EllipticRD(x, y, 1))
}
|