1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mathext
import (
"math"
)
// CompleteK computes the complete elliptic integral of the 1st kind, 0≤m≤1. It returns math.NaN() if m is not in [0,1].
//
// K(m) = \int_{0}^{π/2} 1/{\sqrt{1-m{\sin^2θ}}} dθ
func CompleteK(m float64) float64 {
// Reference:
// Toshio Fukushima, Precise and fast computation of complete elliptic integrals
// by piecewise minimax rational function approximation,
// Journal of Computational and Applied Mathematics, Volume 282, 2015, Pages 71-76.
// https://doi.org/10.1016/j.cam.2014.12.038
// Original Fortran code available at:
// https://www.researchgate.net/publication/295857819_xceitxt_F90_package_of_complete_elliptic_integral_computation
if m < 0 || 1 < m || math.IsNaN(m) {
return math.NaN()
}
mc := 1 - m
if mc > 0.592990 {
t := 2.45694208987494165*mc - 1.45694208987494165
t2 := t * t
p := ((3703.75266375099019 + t2*(2744.82029097576810+t2*36.2381612593459565)) + t*(5462.47093231923466+t2*(543.839017382099411+t2*0.393188651542789784)))
q := ((2077.94377067058435 + t2*(1959.05960044399275+t2*43.5464368440078942)) + t*(3398.00069767755460+t2*(472.794455487539279+t2)))
return p / q
}
if mc > 0.350756 {
t := 4.12823963605439369*mc - 1.44800482178389491
t2 := t * t
p := ((4264.28203103974630 + t2*(3214.59187442783167+t2*43.2589626155454993)) + t*(6341.90978213264024+t2*(642.790566685354573+t2*0.475223892294445943)))
q := ((2125.06914237062279 + t2*(2006.03187933518870+t2*44.1848041560412224)) + t*(3479.95663350926514+t2*(482.900172581418890+t2)))
return p / q
}
if mc > 0.206924 {
t := 6.95255575949719117*mc - 1.43865064797819679
t2 := t * t
p := ((4870.25402224986382 + t2*(3738.29369283392307+t2*51.3609902253065926)) + t*(7307.18826377416591+t2*(754.928587580583704+t2*0.571948962277566451)))
q := ((2172.51745704102287 + t2*(2056.13612019430497+t2*44.9026847057686146)) + t*(3565.04737778032566+t2*(493.962405117599400+t2)))
return p / q
}
if mc > 0.121734 {
t := 11.7384669562155183*mc - 1.42897053644793990
t2 := t * t
p := ((5514.8512729127464 + t2*(4313.60788246750934+t2*60.598720224393536)) + t*(8350.4595896779631+t2*(880.27903031894216+t2*0.68504458747933773)))
q := ((2218.41682813309737 + t2*(2107.97379949034285+t2*45.6911096775045314)) + t*(3650.41829123846319+t2*(505.74295207655096+t2)))
return p / q
}
if mc > 0.071412 {
t := 19.8720241643813839*mc - 1.41910098962680339
t2 := t * t
p := ((6188.8743957372448 + t2*(4935.41351498551527+t2*70.981049144472361)) + t*(9459.3331440432847+t2*(1018.21910476032105+t2*0.81599895108245948)))
q := ((2260.73112539748448 + t2*(2159.68721749761492+t2*46.5298955058476510)) + t*(3732.66955095581621+t2*(517.86964191812384+t2)))
return p / q
}
if mc > 0.041770 {
t := 33.7359152553808785*mc - 1.40914918021725929
t2 := t * t
p := ((6879.5170681289562 + t2*(5594.8381504799829+t2*82.452856129147838)) + t*(10615.0836403687221+t2*(1167.26108955935542+t2*0.96592719058503951)))
q := ((2296.88303450660439 + t2*(2208.74949754945558+t2*47.3844470709989137)) + t*(3807.37745652028212+t2*(529.79651353072921+t2)))
return p / q
}
if mc > 0.024360 {
t := 57.4382538770821367*mc - 1.39919586444572085
t2 := t * t
p := ((7570.6827538712100 + t2*(6279.2661370014890+t2*94.886883830605940)) + t*(11792.9392624454532+t2*(1325.01058966228180+t2*1.13537029594409690)))
q := ((2324.04824540459984 + t2*(2252.22250562615338+t2*48.2089280211559345)) + t*(3869.56755306385732+t2*(540.85752251676412+t2)))
return p / q
}
if mc > 0.014165 {
t := 98.0872976949485042*mc - 1.38940657184894556
t2 := t * t
p := ((8247.2601660137746 + t2*(6974.7495213178613+t2*108.098282908839979)) + t*(12967.7060124572914+t2*(1488.54008220335966+t2*1.32411616748380686)))
q := ((2340.47337508405427 + t2*(2287.70677154700516+t2*48.9575432570382154)) + t*(3915.63324533769906+t2*(550.45072377717361+t2)))
return p / q
}
if mc > 0.008213 {
t := 168.010752688172043*mc - 1.37987231182795699
t2 := t * t
p := ((8894.2961573611293 + t2*(7666.5611739483371+t2*121.863474964652041)) + t*(14113.7038749808951+t2*(1654.60731579994159+t2*1.53112170837206117)))
q := ((2344.88618943372377 + t2*(2313.28396270968662+t2*49.5906602613891184)) + t*(3942.81065054556536+t2*(558.07615380622169+t2)))
return p / q
}
if mc > 0 {
t := 1.0 - 121.758188238159016*mc
p := -math.Log(mc*0.0625) * (34813.4518336350547 + t*(235.767716637974271+t*0.199792723884069485)) / (69483.5736412906324 + t*(614.265044703187382+t))
q := -mc * (9382.53386835986099 + t*(51.6478985993381223+t*0.00410754154682816898)) / (37327.7262507318317 + t*(408.017247271148538+t))
return p + q
}
return math.Inf(1)
}
// CompleteE computes the complete elliptic integral of the 2nd kind, 0≤m≤1. It returns math.NaN() if m is not in [0,1].
//
// E(m) = \int_{0}^{π/2} {\sqrt{1-m{\sin^2θ}}} dθ
func CompleteE(m float64) float64 {
// Reference:
// Toshio Fukushima, Precise and fast computation of complete elliptic integrals
// by piecewise minimax rational function approximation,
// Journal of Computational and Applied Mathematics, Volume 282, 2015, Pages 71-76.
// https://doi.org/10.1016/j.cam.2014.12.038
// Original Fortran code available at:
// https://www.researchgate.net/publication/295857819_xceitxt_F90_package_of_complete_elliptic_integral_computation
if m < 0 || 1 < m || math.IsNaN(m) {
return math.NaN()
}
mc := 1 - m
if mc > 0.566638 {
t := 2.30753965506897236*mc - 1.30753965506897236
t2 := t * t
p := ((19702.2363352671642 + t2*(18177.1879313824040+t2*409.975559128654710)) + t*(31904.1559574281609+t2*(4362.94760768571862+t2*10.3244775335024885)))
q := ((14241.2135819448616 + t2*(10266.4884503526076+t2*117.162100771599098)) + t*(20909.9899599927367+t2*(1934.86289070792954+t2)))
return p / q
}
if mc > 0.315153 {
t := 3.97638030101198879*mc - 1.25316818100483130
t2 := t * t
p := ((16317.0721393008221 + t2*(15129.4009798463159+t2*326.113727011739428)) + t*(26627.8852140835023+t2*(3574.15857605556033+t2*7.93163724081373477)))
q := ((13047.1505096551210 + t2*(9964.25173735060361+t2*117.670514069579649)) + t*(19753.5762165922376+t2*(1918.72232033637537+t2)))
return p / q
}
if mc > 0.171355 {
t := 6.95419964116329852*mc - 1.19163687951153702
t2 := t * t
p := ((13577.3850240991520 + t2*(12871.9137872656293+t2*263.964361648520708)) + t*(22545.4744699553993+t2*(3000.74575264868572+t2*6.08522443139677663)))
q := ((11717.3306408059832 + t2*(9619.40382323874064+t2*118.690522739531267)) + t*(18431.1264424290258+t2*(1904.06010727307491+t2)))
return p / q
}
if mc > 0.090670 {
t := 12.3938774245522712*mc - 1.12375286608415443
t2 := t * t
p := ((11307.9485341543712 + t2*(11208.6068472959372+t2*219.253495956962613)) + t*(19328.6173704569489+t2*(2596.54874477084334+t2*4.66931143174036616)))
q := ((10307.6837501971393 + t2*(9241.7604666150102+t2*120.498555754227847)) + t*(16982.2450249024383+t2*(1893.41905403040679+t2)))
return p / q
}
if mc > 0.046453 {
t := 22.6157360291290680*mc - 1.05056878576113260
t2 := t * t
p := ((9383.1490856819874 + t2*(9977.2498973537718+t2*188.618148076418837)) + t*(16718.9730458676860+t2*(2323.49987246555537+t2*3.59313532204509922)))
q := ((8877.1964704758383 + t2*(8840.2771293410661+t2*123.422125687316355)) + t*(15450.0537230364062+t2*(1889.13672102820913+t2)))
return p / q
}
if mc > 0.022912 {
t := 42.4790790535661187*mc - 0.973280659275306911
t2 := t * t
p := ((7719.1171817802054 + t2*(9045.3996063894006+t2*169.386557799782496)) + t*(14521.7363804934985+t2*(2149.92068078627829+t2*2.78515570453129137)))
q := ((7479.7539074698012 + t2*(8420.3848818926324+t2*127.802109608726363)) + t*(13874.4978011497847+t2*(1892.69753150329759+t2)))
return p / q
}
if mc > 0.010809 {
t := 82.6241427745187144*mc - 0.893084359249772784
t2 := t * t
p := ((6261.6095608987273 + t2*(8304.3265605809870+t2*159.371262600702237)) + t*(12593.0874916293982+t2*(2048.68391263416822+t2*2.18867046462858104)))
q := ((6156.4532048239501 + t2*(7979.7435857665227+t2*133.911640385965187)) + t*(12283.8373999680518+t2*(1903.60556312663537+t2)))
return p / q
}
if mc > 0.004841 {
t := 167.560321715817694*mc - 0.811159517426273458
t2 := t * t
p := ((4978.06146583586728 + t2*(7664.6703673290453+t2*156.689647694892782)) + t*(10831.7178150656694+t2*(1995.66437151562090+t2*1.75859085945198570)))
q := ((4935.56743322938333 + t2*(7506.8028283118051+t2*141.854303920116856)) + t*(10694.5510113880077+t2*(1918.38517009740321+t2)))
return p / q
}
if mc > 0 {
t := 1.0 - 206.568890725056806*mc
p := -mc * math.Log(mc*0.0625) * (41566.6612602868736 + t*(154.034981522913482+t*0.0618072471798575991)) / (165964.442527585615 + t*(917.589668642251803+t))
q := (132232.803956682877 + t*(353.375480007017643-t*1.40105837312528026)) / (132393.665743088043 + t*(192.112635228732532-t))
return p + q
}
return 1
}
// CompleteB computes an associate complete elliptic integral of the 2nd kind, 0≤m≤1. It returns math.NaN() if m is not in [0,1].
//
// B(m) = \int_{0}^{π/2} {\cos^2θ} / {\sqrt{1-m{\sin^2θ}}} dθ
func CompleteB(m float64) float64 {
// Reference:
// Toshio Fukushima, Precise and fast computation of complete elliptic integrals
// by piecewise minimax rational function approximation,
// Journal of Computational and Applied Mathematics, Volume 282, 2015, Pages 71-76.
// https://doi.org/10.1016/j.cam.2014.12.038
// Original Fortran code available at:
// https://www.researchgate.net/publication/295857819_xceitxt_F90_package_of_complete_elliptic_integral_computation
if m < 0 || 1 < m || math.IsNaN(m) {
return math.NaN()
}
mc := 1 - m
if mc > 0.555073 {
t := 2.24755971204264969*mc - 1.24755971204264969
t2 := t * t
p := ((2030.25011505956379 + t2*(1727.60635612511943+t2*25.0715510300422010)) + t*(3223.16236100954529+t2*(361.164121995173076+t2*0.280355207707726826)))
q := ((2420.64907902774675 + t2*(2327.48464880306840+t2*47.9870997057202318)) + t*(4034.28168313496638+t2*(549.234220839203960+t2)))
return p / q
}
if mc > 0.302367 {
t := 3.95716761770595079*mc - 1.19651690106289522
t2 := t * t
p := ((2209.26925068374373 + t2*(1981.37862223307242+t2*29.7612810087709299)) + t*(3606.58475322372526+t2*(422.693774742063054+t2*0.334623999861181980)))
q := ((2499.57898767250755 + t2*(2467.63998386656941+t2*50.0198090806651216)) + t*(4236.30953048456334+t2*(581.879599221457589+t2)))
return p / q
}
if mc > 0.161052 {
t := 7.07638962601280827*mc - 1.13966670204861480
t2 := t * t
p := ((2359.14823394150129 + t2*(2254.30785457761760+t2*35.2259786264917876)) + t*(3983.28520266051676+t2*(492.601686517364701+t2*0.396605124984359783)))
q := ((2563.95563932625156 + t2*(2633.23323959119935+t2*52.6711647124832948)) + t*(4450.19076667898892+t2*(622.983787815718489+t2)))
return p / q
}
if mc > 0.083522 {
t := 12.8982329420869341*mc - 1.07728621178898491
t2 := t * t
p := ((2464.65334987833736 + t2*(2541.68516994216007+t2*41.5832527504007778)) + t*(4333.38639187691528+t2*(571.53606797524881+t2*0.465975784547025267)))
q := ((2600.66956117247726 + t2*(2823.69445052534842+t2*56.136001230010910)) + t*(4661.64381841490914+t2*(674.25435972414302+t2)))
return p / q
}
if mc > 0.041966 {
t := 24.0639137549331023*mc - 1.00986620463952257
t2 := t * t
p := ((2509.86724450741259 + t2*(2835.27071287535469+t2*48.9701196718008345)) + t*(4631.12336462339975+t2*(659.86172161727281+t2*0.54158304771955794)))
q := ((2594.15983397593723 + t2*(3034.20118545214106+t2*60.652838995496991)) + t*(4848.17491604384532+t2*(737.15143838356850+t2)))
return p / q
}
if mc > 0.020313 {
t := 46.1829769546944996*mc - 0.938114810880709371
t2 := t * t
p := ((2480.58307884128017 + t2*(3122.00900554841322+t2*57.541132641218839)) + t*(4845.57861173250699+t2*(757.31633816400643+t2*0.62119950515996627)))
q := ((2528.85218300581396 + t2*(3253.86151324157460+t2*66.496093157522450)) + t*(4979.31783250484768+t2*(812.40556572486862+t2)))
return p / q
}
if mc > 0.009408 {
t := 91.7010545621274645*mc - 0.862723521320495186
t2 := t * t
p := ((2365.25385348859592 + t2*(3381.09304915246175+t2*67.442026950538221)) + t*(4939.53925884558687+t2*(862.16657576129841+t2*0.70143698925710129)))
q := ((2390.48737882063755 + t2*(3462.34808443022907+t2*73.934680452209164)) + t*(5015.4675579215077+t2*(898.99542983710459+t2)))
return p / q
}
if mc > 0.004136 {
t := 189.681335356600910*mc - 0.784522003034901366
t2 := t * t
p := ((2160.82916040868119 + t2*(3584.53058926175721+t2*78.769178005879162)) + t*(4877.14832623847052+t2*(970.53716686804832+t2*0.77797110431753920)))
q := ((2172.70451405048305 + t2*(3630.52345460629336+t2*83.173163222639080)) + t*(4916.35263668839769+t2*(993.36676027886685+t2)))
return p / q
}
if mc > 0 {
t := 1 - 106.292517006802721*mc
p := mc * math.Log(mc*0.0625) * (6607.46457640413908 + t*(19.0287633783211078-t*0.00625368946932704460)) / (26150.3443630974309 + t*(354.603981274536040+t))
q := (26251.5678902584870 + t*(168.788023807915689+t*0.352150236262724288)) / (26065.7912239203873 + t*(353.916840382280456+t))
return p + q
}
return 1
}
// CompleteD computes an associate complete elliptic integral of the 2nd kind, 0≤m≤1. It returns math.NaN() if m is not in [0,1].
//
// D(m) = \int_{0}^{π/2} {\sin^2θ} / {\sqrt{1-m{\sin^2θ}}} dθ
func CompleteD(m float64) float64 {
// Reference:
// Toshio Fukushima, Precise and fast computation of complete elliptic integrals
// by piecewise minimax rational function approximation,
// Journal of Computational and Applied Mathematics, Volume 282, 2015, Pages 71-76.
// https://doi.org/10.1016/j.cam.2014.12.038
// Original Fortran code available at:
// https://www.researchgate.net/publication/295857819_xceitxt_F90_package_of_complete_elliptic_integral_computation
if m < 0 || 1 < m || math.IsNaN(m) {
return math.NaN()
}
mc := 1 - m
if mc > 0.599909 {
t := 2.49943137936119533*mc - 1.49943137936119533
t2 := t * t
p := ((1593.39813781813498 + t2*(1058.56241259843217+t2*11.7584241242587571)) + t*(2233.25576544961714+t2*(195.247394601357872+t2*0.101486443490307517)))
q := ((1685.47865546030468 + t2*(1604.88100543517015+t2*38.6743012128666717)) + t*(2756.20968383181114+t2*(397.504162950935944+t2)))
return p / q
}
if mc > 0.359180 {
t := 4.15404874360795750*mc - 1.49205122772910617
t2 := t * t
p := ((1967.01442513777287 + t2*(1329.30058268219177+t2*15.0447805948342760)) + t*(2779.87604145516343+t2*(247.475085945854673+t2*0.130547566005491628)))
q := ((1749.70634057327467 + t2*(1654.40804288486242+t2*39.1895256017535337)) + t*(2853.92630369567765+t2*(406.925098588378587+t2)))
return p / q
}
if mc > 0.214574 {
t := 6.91534237860116454*mc - 1.48385267554596628
t2 := t * t
p := ((2409.64196912091452 + t2*(1659.30176823041376+t2*19.1942111405094383)) + t*(3436.40744503228691+t2*(312.186468430688790+t2*0.167847673021897479)))
q := ((1824.89205701262525 + t2*(1715.38574780156913+t2*39.8798253173462218)) + t*(2971.02216287936566+t2*(418.929791715319490+t2)))
return p / q
}
if mc > 0.127875 {
t := 11.5341584101316047*mc - 1.47493050669557896
t2 := t * t
p := ((2926.81143179637839 + t2*(2056.45624281065334+t2*24.3811986813439843)) + t*(4214.52119721241319+t2*(391.420514384925370+t2*0.215574280659075512)))
q := ((1910.33091918583314 + t2*(1787.99942542734799+t2*40.7663012893484449)) + t*(3107.04531802441481+t2*(433.673494280825971+t2)))
return p / q
}
if mc > 0.076007 {
t := 19.2797100331611013*mc - 1.46539292049047582
t2 := t * t
p := ((3520.63614251102960 + t2*(2526.67111759550923+t2*30.7739877519417978)) + t*(5121.2842239226937+t2*(486.926821696342529+t2*0.276315678908126399)))
q := ((2003.81997889501324 + t2*(1871.05914195570669+t2*41.8489850490387023)) + t*(3259.09205279874214+t2*(451.007555352632053+t2)))
return p / q
}
if mc > 0.045052 {
t := 32.3049588111775157*mc - 1.45540300436116944
t2 := t * t
p := ((4188.00087087025347 + t2*(3072.05695847158556+t2*38.5070211470790031)) + t*(6156.0080960857764+t2*(599.76666155374012+t2*0.352955925261363680)))
q := ((2101.60113938424690 + t2*(1961.76794074710108+t2*43.0997999502743622)) + t*(3421.55151253792527+t2*(470.407158843118117+t2)))
return p / q
}
if mc > 0.026626 {
t := 54.2711386084880061*mc - 1.44502333658960165
t2 := t * t
p := ((4916.74442376570733 + t2*(3688.12811638360551+t2*47.6447145147811350)) + t*(7304.6632479558695+t2*(729.75841970840314+t2*0.448422756936257635)))
q := ((2197.49982676612397 + t2*(2055.19657857622715+t2*44.4576261146308645)) + t*(3584.94502590860852+t2*(490.880160668822953+t2)))
return p / q
}
if mc > 0.015689 {
t := 91.4327512114839536*mc - 1.43448843375697175
t2 := t * t
p := ((5688.7542903989517 + t2*(4364.21513060078954+t2*58.159468141567195)) + t*(8542.6096475195826+t2*(875.35992968472914+t2*0.56528145509695951)))
q := ((2285.44062680812883 + t2*(2145.80779422696555+t2*45.8427480379028781)) + t*(3739.30422133833258+t2*(511.23253971875808+t2)))
return p / q
}
if mc > 0.009216 {
t := 154.487872701992894*mc - 1.42376023482156651
t2 := t * t
p := ((6475.3392225234969 + t2*(5081.2997108708577+t2*69.910123337464043)) + t*(9829.1138694605662+t2*(1033.32687775311981+t2*0.70526087421186325)))
q := ((2357.74885505777295 + t2*(2226.89527217032394+t2*47.1609071069631012)) + t*(3872.32565152553360+t2*(530.03943432061149+t2)))
return p / q
}
if mc > 0 {
t := 1 - 108.506944444444444*mc
p := -math.Log(mc*0.0625) * (6.2904323649908115e6 + t*(58565.284164780476+t*(131.176674599188545+t*0.0426826410911220304))) / (1.24937550257219890e7 + t*(203580.534005225410+t*(921.17729845011868+t)))
q := -(27356.1090344387530 + t*(107.767403612304371-t*0.0827769227048233593)) / (27104.0854889805978 + t*(358.708172147752755+t))
return p + q
}
return math.Inf(1)
}
|