1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package amos
import (
"math"
"math/cmplx"
)
/*
The AMOS functions are included in SLATEC, and the SLATEC guide (http://www.netlib.org/slatec/guide) explicitly states:
"The Library is in the public domain and distributed by the Energy
Science and Technology Software Center."
Mention of AMOS's inclusion in SLATEC goes back at least to this 1985 technical report from Sandia National Labs: http://infoserve.sandia.gov/sand_doc/1985/851018.pdf
*/
// math.NaN() are for padding to keep indexing easy.
var imach = []int{-0, 5, 6, 0, 0, 32, 4, 2, 31, 2147483647, 2, 24, -125, 127, 53, -1021, 1023}
var dmach = []float64{math.NaN(), 2.23e-308, 1.79e-308, 1.11e-16, 2.22e-16, 0.30103000998497009}
func abs(a int) int {
if a >= 0 {
return a
}
return -a
}
func Zairy(ZR, ZI float64, ID, KODE int) (AIR, AII float64, NZ, IERR int) {
// zairy is adapted from the original Netlib code by Donald Amos.
// http://www.netlib.no/netlib/amos/zairy.f
// Original comment:
/*
C***BEGIN PROLOGUE ZAIRY
C***DATE WRITTEN 830501 (YYMMDD)
C***REVISION DATE 890801 (YYMMDD)
C***CATEGORY NO. B5K
C***KEYWORDS AIRY FUNCTION,BESSEL FUNCTIONS OF ORDER ONE THIRD
C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
C***PURPOSE TO COMPUTE AIRY FUNCTIONS AI(Z) AND DAI(Z) FOR COMPLEX Z
C***DESCRIPTION
C
C ***A DOUBLE PRECISION ROUTINE***
C ON KODE=1, ZAIRY COMPUTES THE COMPLEX AIRY FUNCTION AI(Z) OR
C ITS DERIVATIVE DAI(Z)/DZ ON ID=0 OR ID=1 RESPECTIVELY. ON
C KODE=2, A SCALING OPTION CEXP(ZTA)*AI(Z) OR CEXP(ZTA)*
C DAI(Z)/DZ IS PROVIDED TO REMOVE THE EXPONENTIAL DECAY IN
C -PI/3<ARG(Z)<PI/3 AND THE EXPONENTIAL GROWTH IN
C PI/3<ABS(ARG(Z))<PI WHERE ZTA=(2/3)*Z*CSQRT(Z).
C
C WHILE THE AIRY FUNCTIONS AI(Z) AND DAI(Z)/DZ ARE ANALYTIC IN
C THE WHOLE Z PLANE, THE CORRESPONDING SCALED FUNCTIONS DEFINED
C FOR KODE=2 HAVE A CUT ALONG THE NEGATIVE REAL AXIS.
C DEFINTIONS AND NOTATION ARE FOUND IN THE NBS HANDBOOK OF
C MATHEMATICAL FUNCTIONS (REF. 1).
C
C INPUT ZR,ZI ARE DOUBLE PRECISION
C ZR,ZI - Z=CMPLX(ZR,ZI)
C ID - ORDER OF DERIVATIVE, ID=0 OR ID=1
C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
C KODE= 1 returnS
C AI=AI(Z) ON ID=0 OR
C AI=DAI(Z)/DZ ON ID=1
C = 2 returnS
C AI=CEXP(ZTA)*AI(Z) ON ID=0 OR
C AI=CEXP(ZTA)*DAI(Z)/DZ ON ID=1 WHERE
C ZTA=(2/3)*Z*CSQRT(Z)
C
C OUTPUT AIR,AII ARE DOUBLE PRECISION
C AIR,AII- COMPLEX ANSWER DEPENDING ON THE CHOICES FOR ID AND
C KODE
C NZ - UNDERFLOW INDICATOR
C NZ= 0 , NORMAL return
C NZ= 1 , AI=CMPLX(0.0E0,0.0E0) DUE TO UNDERFLOW IN
C -PI/3<ARG(Z)<PI/3 ON KODE=1
C IERR - ERROR FLAG
C IERR=0, NORMAL return - COMPUTATION COMPLETED
C IERR=1, INPUT ERROR - NO COMPUTATION
C IERR=2, OVERFLOW - NO COMPUTATION, REAL(ZTA)
C TOO LARGE ON KODE=1
C IERR=3, CABS(Z) LARGE - COMPUTATION COMPLETED
C LOSSES OF SIGNIFCANCE BY ARGUMENT REDUCTION
C PRODUCE LESS THAN HALF OF MACHINE ACCURACY
C IERR=4, CABS(Z) TOO LARGE - NO COMPUTATION
C COMPLETE LOSS OF ACCURACY BY ARGUMENT
C REDUCTION
C IERR=5, ERROR - NO COMPUTATION,
C ALGORITHM TERMINATION CONDITION NOT MET
C
C***LONG DESCRIPTION
C
C AI AND DAI ARE COMPUTED FOR CABS(Z)>1.0 FROM THE K BESSEL
C FUNCTIONS BY
C
C AI(Z)=C*SQRT(Z)*K(1/3,ZTA) , DAI(Z)=-C*Z*K(2/3,ZTA)
C C=1.0/(PI*SQRT(3.0))
C ZTA=(2/3)*Z**(3/2)
C
C WITH THE POWER SERIES FOR CABS(Z)<=1.0.
C
C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z IS LARGE, LOSSES
C OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR. CONSEQUENTLY, IF
C THE MAGNITUDE OF ZETA=(2/3)*Z**1.5 EXCEEDS U1=SQRT(0.5/UR),
C THEN LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR
C FLAG IERR=3 IS TRIGGERED WHERE UR=math.Max(dmach[4),1.0D-18) IS
C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
C ALSO, if THE MAGNITUDE OF ZETA IS LARGER THAN U2=0.5/UR, THEN
C ALL SIGNIFICANCE IS LOST AND IERR=4. IN ORDER TO USE THE INT
C FUNCTION, ZETA MUST BE FURTHER RESTRICTED NOT TO EXCEED THE
C LARGEST INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF ZETA
C MUST BE RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2,
C AND U3 ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE
C PRECISION ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE
C PRECISION ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMIT-
C ING IN THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT THE MAG-
C NITUDE OF Z CANNOT EXCEED 3.1E+4 IN SINGLE AND 2.1E+6 IN
C DOUBLE PRECISION ARITHMETIC. THIS ALSO MEANS THAT ONE CAN
C EXPECT TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES,
C NO DIGITS IN SINGLE PRECISION AND ONLY 7 DIGITS IN DOUBLE
C PRECISION ARITHMETIC. SIMILAR CONSIDERATIONS HOLD FOR OTHER
C MACHINES.
C
C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
C SEVERAL ORDERS OF MAGNITUDE. if ONE COMPONENT IS 10**K LARGER
C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
C OR -PI/2+P.
C
C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
C COMMERCE, 1955.
C
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
C
C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
C 1018, MAY, 1985
C
C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
C MATH. SOFTWARE, 1986
*/
var AI, CONE, CSQ, CY, S1, S2, TRM1, TRM2, Z, ZTA, Z3 complex128
var AA, AD, AK, ALIM, ATRM, AZ, AZ3, BK,
CC, CK, COEF, CONEI, CONER, CSQI, CSQR, C1, C2, DIG,
DK, D1, D2, ELIM, FID, FNU, PTR, RL, R1M5, SFAC, STI, STR,
S1I, S1R, S2I, S2R, TOL, TRM1I, TRM1R, TRM2I, TRM2R, TTH, ZEROI,
ZEROR, ZTAI, ZTAR, Z3I, Z3R, ALAZ, BB float64
var IFLAG, K, K1, K2, MR, NN int
var tmp complex128
// Extra element for padding.
CYR := []float64{math.NaN(), 0}
CYI := []float64{math.NaN(), 0}
_ = AI
_ = CONE
_ = CSQ
_ = CY
_ = S1
_ = S2
_ = TRM1
_ = TRM2
_ = Z
_ = ZTA
_ = Z3
TTH = 6.66666666666666667e-01
C1 = 3.55028053887817240e-01
C2 = 2.58819403792806799e-01
COEF = 1.83776298473930683e-01
ZEROR = 0
ZEROI = 0
CONER = 1
CONEI = 0
NZ = 0
if ID < 0 || ID > 1 {
IERR = 1
}
if KODE < 1 || KODE > 2 {
IERR = 1
}
if IERR != 0 {
return
}
AZ = cmplx.Abs(complex(ZR, ZI))
TOL = math.Max(dmach[4], 1.0e-18)
FID = float64(ID)
if AZ > 1.0e0 {
goto Seventy
}
// POWER SERIES FOR CABS(Z)<=1.
S1R = CONER
S1I = CONEI
S2R = CONER
S2I = CONEI
if AZ < TOL {
goto OneSeventy
}
AA = AZ * AZ
if AA < TOL/AZ {
goto Forty
}
TRM1R = CONER
TRM1I = CONEI
TRM2R = CONER
TRM2I = CONEI
ATRM = 1.0e0
STR = ZR*ZR - ZI*ZI
STI = ZR*ZI + ZI*ZR
Z3R = STR*ZR - STI*ZI
Z3I = STR*ZI + STI*ZR
AZ3 = AZ * AA
AK = 2.0e0 + FID
BK = 3.0e0 - FID - FID
CK = 4.0e0 - FID
DK = 3.0e0 + FID + FID
D1 = AK * DK
D2 = BK * CK
AD = math.Min(D1, D2)
AK = 24.0e0 + 9.0e0*FID
BK = 30.0e0 - 9.0e0*FID
for K = 1; K <= 25; K++ {
STR = (TRM1R*Z3R - TRM1I*Z3I) / D1
TRM1I = (TRM1R*Z3I + TRM1I*Z3R) / D1
TRM1R = STR
S1R = S1R + TRM1R
S1I = S1I + TRM1I
STR = (TRM2R*Z3R - TRM2I*Z3I) / D2
TRM2I = (TRM2R*Z3I + TRM2I*Z3R) / D2
TRM2R = STR
S2R = S2R + TRM2R
S2I = S2I + TRM2I
ATRM = ATRM * AZ3 / AD
D1 = D1 + AK
D2 = D2 + BK
AD = math.Min(D1, D2)
if ATRM < TOL*AD {
goto Forty
}
AK = AK + 18.0e0
BK = BK + 18.0e0
}
Forty:
if ID == 1 {
goto Fifty
}
AIR = S1R*C1 - C2*(ZR*S2R-ZI*S2I)
AII = S1I*C1 - C2*(ZR*S2I+ZI*S2R)
if KODE == 1 {
return
}
tmp = cmplx.Sqrt(complex(ZR, ZI))
STR = real(tmp)
STI = imag(tmp)
ZTAR = TTH * (ZR*STR - ZI*STI)
ZTAI = TTH * (ZR*STI + ZI*STR)
tmp = cmplx.Exp(complex(ZTAR, ZTAI))
STR = real(tmp)
STI = imag(tmp)
PTR = AIR*STR - AII*STI
AII = AIR*STI + AII*STR
AIR = PTR
return
Fifty:
AIR = -S2R * C2
AII = -S2I * C2
if AZ <= TOL {
goto Sixty
}
STR = ZR*S1R - ZI*S1I
STI = ZR*S1I + ZI*S1R
CC = C1 / (1.0e0 + FID)
AIR = AIR + CC*(STR*ZR-STI*ZI)
AII = AII + CC*(STR*ZI+STI*ZR)
Sixty:
if KODE == 1 {
return
}
tmp = cmplx.Sqrt(complex(ZR, ZI))
STR = real(tmp)
STI = imag(tmp)
ZTAR = TTH * (ZR*STR - ZI*STI)
ZTAI = TTH * (ZR*STI + ZI*STR)
tmp = cmplx.Exp(complex(ZTAR, ZTAI))
STR = real(tmp)
STI = imag(tmp)
PTR = STR*AIR - STI*AII
AII = STR*AII + STI*AIR
AIR = PTR
return
// CASE FOR CABS(Z)>1.0.
Seventy:
FNU = (1.0e0 + FID) / 3.0e0
/*
SET PARAMETERS RELATED TO MACHINE CONSTANTS.
TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0D-18.
ELIM IS THE APPROXIMATE EXPONENTIAL OVER-&&UNDERFLOW LIMIT.
EXP(-ELIM)<EXP(-ALIM)=EXP(-ELIM)/TOL AND
EXP(ELIM)>EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
UNDERFLOW&&OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LA>=Z.
DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
*/
K1 = imach[15]
K2 = imach[16]
R1M5 = dmach[5]
K = min(abs(K1), abs(K2))
ELIM = 2.303e0 * (float64(K)*R1M5 - 3.0e0)
K1 = imach[14] - 1
AA = R1M5 * float64(K1)
DIG = math.Min(AA, 18.0e0)
AA = AA * 2.303e0
ALIM = ELIM + math.Max(-AA, -41.45e0)
RL = 1.2e0*DIG + 3.0e0
ALAZ = math.Log(AZ)
// TEST FOR PROPER RANGE.
AA = 0.5e0 / TOL
BB = float64(float32(imach[9])) * 0.5e0
AA = math.Min(AA, BB)
AA = math.Pow(AA, TTH)
if AZ > AA {
goto TwoSixty
}
AA = math.Sqrt(AA)
if AZ > AA {
IERR = 3
}
tmp = cmplx.Sqrt(complex(ZR, ZI))
CSQR = real(tmp)
CSQI = imag(tmp)
ZTAR = TTH * (ZR*CSQR - ZI*CSQI)
ZTAI = TTH * (ZR*CSQI + ZI*CSQR)
// RE(ZTA)<=0 WHEN RE(Z)<0, ESPECIALLY WHEN IM(Z) IS SMALL.
IFLAG = 0
SFAC = 1.0e0
AK = ZTAI
if ZR >= 0.0e0 {
goto Eighty
}
BK = ZTAR
CK = -math.Abs(BK)
ZTAR = CK
ZTAI = AK
Eighty:
if ZI != 0.0e0 {
goto Ninety
}
if ZR > 0.0e0 {
goto Ninety
}
ZTAR = 0.0e0
ZTAI = AK
Ninety:
AA = ZTAR
if AA >= 0.0e0 && ZR > 0.0e0 {
goto OneTen
}
if KODE == 2 {
goto OneHundred
}
// OVERFLOW TEST.
if AA > (-ALIM) {
goto OneHundred
}
AA = -AA + 0.25e0*ALAZ
IFLAG = 1
SFAC = TOL
if AA > ELIM {
goto TwoSeventy
}
OneHundred:
// CBKNU AND CACON return EXP(ZTA)*K(FNU,ZTA) ON KODE=2.
MR = 1
if ZI < 0.0e0 {
MR = -1
}
_, _, _, _, _, _, CYR, CYI, NN, _, _, _, _ = Zacai(ZTAR, ZTAI, FNU, KODE, MR, 1, CYR, CYI, RL, TOL, ELIM, ALIM)
if NN < 0 {
goto TwoEighty
}
NZ = NZ + NN
goto OneThirty
OneTen:
if KODE == 2 {
goto OneTwenty
}
// UNDERFLOW TEST.
if AA < ALIM {
goto OneTwenty
}
AA = -AA - 0.25e0*ALAZ
IFLAG = 2
SFAC = 1.0e0 / TOL
if AA < (-ELIM) {
goto TwoTen
}
OneTwenty:
_, _, _, _, _, CYR, CYI, NZ, _, _, _ = Zbknu(ZTAR, ZTAI, FNU, KODE, 1, CYR, CYI, TOL, ELIM, ALIM)
OneThirty:
S1R = CYR[1] * COEF
S1I = CYI[1] * COEF
if IFLAG != 0 {
goto OneFifty
}
if ID == 1 {
goto OneFourty
}
AIR = CSQR*S1R - CSQI*S1I
AII = CSQR*S1I + CSQI*S1R
return
OneFourty:
AIR = -(ZR*S1R - ZI*S1I)
AII = -(ZR*S1I + ZI*S1R)
return
OneFifty:
S1R = S1R * SFAC
S1I = S1I * SFAC
if ID == 1 {
goto OneSixty
}
STR = S1R*CSQR - S1I*CSQI
S1I = S1R*CSQI + S1I*CSQR
S1R = STR
AIR = S1R / SFAC
AII = S1I / SFAC
return
OneSixty:
STR = -(S1R*ZR - S1I*ZI)
S1I = -(S1R*ZI + S1I*ZR)
S1R = STR
AIR = S1R / SFAC
AII = S1I / SFAC
return
OneSeventy:
AA = 1.0e+3 * dmach[1]
S1R = ZEROR
S1I = ZEROI
if ID == 1 {
goto OneNinety
}
if AZ <= AA {
goto OneEighty
}
S1R = C2 * ZR
S1I = C2 * ZI
OneEighty:
AIR = C1 - S1R
AII = -S1I
return
OneNinety:
AIR = -C2
AII = 0.0e0
AA = math.Sqrt(AA)
if AZ <= AA {
goto TwoHundred
}
S1R = 0.5e0 * (ZR*ZR - ZI*ZI)
S1I = ZR * ZI
TwoHundred:
AIR = AIR + C1*S1R
AII = AII + C1*S1I
return
TwoTen:
NZ = 1
AIR = ZEROR
AII = ZEROI
return
TwoSeventy:
NZ = 0
IERR = 2
return
TwoEighty:
if NN == (-1) {
goto TwoSeventy
}
NZ = 0
IERR = 5
return
TwoSixty:
IERR = 4
NZ = 0
return
}
// sbknu computes the k bessel function in the right half z plane.
func Zbknu(ZR, ZI, FNU float64, KODE, N int, YR, YI []float64, TOL, ELIM, ALIM float64) (ZRout, ZIout, FNUout float64, KODEout, Nout int, YRout, YIout []float64, NZ int, TOLout, ELIMout, ALIMout float64) {
/* Old dimension comment.
DIMENSION YR(N), YI(N), CC(8), CSSR(3), CSRR(3), BRY(3), CYR(2),
* CYI(2)
*/
// TODO(btracey): Find which of these are inputs/outputs/both and clean up
// the function call.
// YR and YI have length n (but n+1 with better indexing)
var AA, AK, ASCLE, A1, A2, BB, BK, CAZ,
CBI, CBR, CCHI, CCHR, CKI, CKR, COEFI, COEFR, CONEI, CONER,
CRSCR, CSCLR, CSHI, CSHR, CSI, CSR, CTWOR,
CZEROI, CZEROR, CZI, CZR, DNU, DNU2, DPI, ETEST, FC, FHS,
FI, FK, FKS, FMUI, FMUR, FPI, FR, G1, G2, HPI, PI, PR, PTI,
PTR, P1I, P1R, P2I, P2M, P2R, QI, QR, RAK, RCAZ, RTHPI, RZI,
RZR, R1, S, SMUI, SMUR, SPI, STI, STR, S1I, S1R, S2I, S2R, TM,
TTH, T1, T2, ELM, CELMR, ZDR, ZDI, AS, ALAS, HELIM float64
var I, IFLAG, INU, K, KFLAG, KK, KMAX, KODED, IDUM, J, IC, INUB, NW int
var sinh, cosh complex128
//var sin, cos float64
var tmp, p complex128
var CSSR, CSRR, BRY [4]float64
var CYR, CYI [3]float64
KMAX = 30
CZEROR = 0
CZEROI = 0
CONER = 1
CONEI = 0
CTWOR = 2
R1 = 2
DPI = 3.14159265358979324e0
RTHPI = 1.25331413731550025e0
SPI = 1.90985931710274403e0
HPI = 1.57079632679489662e0
FPI = 1.89769999331517738e0
TTH = 6.66666666666666666e-01
CC := [9]float64{math.NaN(), 5.77215664901532861e-01, -4.20026350340952355e-02,
-4.21977345555443367e-02, 7.21894324666309954e-03,
-2.15241674114950973e-04, -2.01348547807882387e-05,
1.13302723198169588e-06, 6.11609510448141582e-09}
CAZ = cmplx.Abs(complex(ZR, ZI))
CSCLR = 1.0e0 / TOL
CRSCR = TOL
CSSR[1] = CSCLR
CSSR[2] = 1.0e0
CSSR[3] = CRSCR
CSRR[1] = CRSCR
CSRR[2] = 1.0e0
CSRR[3] = CSCLR
BRY[1] = 1.0e+3 * dmach[1] / TOL
BRY[2] = 1.0e0 / BRY[1]
BRY[3] = dmach[2]
IFLAG = 0
KODED = KODE
RCAZ = 1.0e0 / CAZ
STR = ZR * RCAZ
STI = -ZI * RCAZ
RZR = (STR + STR) * RCAZ
RZI = (STI + STI) * RCAZ
INU = int(float32(FNU + 0.5))
DNU = FNU - float64(INU)
if math.Abs(DNU) == 0.5e0 {
goto OneTen
}
DNU2 = 0.0e0
if math.Abs(DNU) > TOL {
DNU2 = DNU * DNU
}
if CAZ > R1 {
goto OneTen
}
// SERIES FOR CABS(Z)<=R1.
FC = 1.0e0
tmp = cmplx.Log(complex(RZR, RZI))
SMUR = real(tmp)
SMUI = imag(tmp)
FMUR = SMUR * DNU
FMUI = SMUI * DNU
tmp = complex(FMUR, FMUI)
sinh = cmplx.Sinh(tmp)
cosh = cmplx.Cosh(tmp)
CSHR = real(sinh)
CSHI = imag(sinh)
CCHR = real(cosh)
CCHI = imag(cosh)
if DNU == 0.0e0 {
goto Ten
}
FC = DNU * DPI
FC = FC / math.Sin(FC)
SMUR = CSHR / DNU
SMUI = CSHI / DNU
Ten:
A2 = 1.0e0 + DNU
// GAM(1-Z)*GAM(1+Z)=PI*Z/SIN(PI*Z), T1=1/GAM(1-DNU), T2=1/GAM(1+DNU).
T2 = math.Exp(-dgamln(A2, IDUM))
T1 = 1.0e0 / (T2 * FC)
if math.Abs(DNU) > 0.1e0 {
goto Forty
}
// SERIES FOR F0 TO RESOLVE INDETERMINACY FOR SMALL ABS(DNU).
AK = 1.0e0
S = CC[1]
for K = 2; K <= 8; K++ {
AK = AK * DNU2
TM = CC[K] * AK
S = S + TM
if math.Abs(TM) < TOL {
goto Thirty
}
}
Thirty:
G1 = -S
goto Fifty
Forty:
G1 = (T1 - T2) / (DNU + DNU)
Fifty:
G2 = (T1 + T2) * 0.5e0
FR = FC * (CCHR*G1 + SMUR*G2)
FI = FC * (CCHI*G1 + SMUI*G2)
tmp = cmplx.Exp(complex(FMUR, FMUI))
STR = real(tmp)
STI = imag(tmp)
PR = 0.5e0 * STR / T2
PI = 0.5e0 * STI / T2
tmp = complex(0.5, 0) / complex(STR, STI)
PTR = real(tmp)
PTI = imag(tmp)
QR = PTR / T1
QI = PTI / T1
S1R = FR
S1I = FI
S2R = PR
S2I = PI
AK = 1.0e0
A1 = 1.0e0
CKR = CONER
CKI = CONEI
BK = 1.0e0 - DNU2
if INU > 0 || N > 1 {
goto Eighty
}
// GENERATE K(FNU,Z), 0.0E0 <= FNU < 0.5E0 AND N=1.
if CAZ < TOL {
goto Seventy
}
tmp = complex(ZR, ZI) * complex(ZR, ZI)
CZR = real(tmp)
CZI = imag(tmp)
CZR = 0.25e0 * CZR
CZI = 0.25e0 * CZI
T1 = 0.25e0 * CAZ * CAZ
Sixty:
FR = (FR*AK + PR + QR) / BK
FI = (FI*AK + PI + QI) / BK
STR = 1.0e0 / (AK - DNU)
PR = PR * STR
PI = PI * STR
STR = 1.0e0 / (AK + DNU)
QR = QR * STR
QI = QI * STR
STR = CKR*CZR - CKI*CZI
RAK = 1.0e0 / AK
CKI = (CKR*CZI + CKI*CZR) * RAK
CKR = STR * RAK
S1R = CKR*FR - CKI*FI + S1R
S1I = CKR*FI + CKI*FR + S1I
A1 = A1 * T1 * RAK
BK = BK + AK + AK + 1.0e0
AK = AK + 1.0e0
if A1 > TOL {
goto Sixty
}
Seventy:
YR[1] = S1R
YI[1] = S1I
if KODED == 1 {
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM, ALIM
}
tmp = cmplx.Exp(complex(ZR, ZI))
STR = real(tmp)
STI = imag(tmp)
tmp = complex(S1R, S1I) * complex(STR, STI)
YR[1] = real(tmp)
YI[1] = imag(tmp)
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM, ALIM
// GENERATE K(DNU,Z) AND K(DNU+1,Z) FOR FORWARD RECURRENCE.
Eighty:
if CAZ < TOL {
goto OneHundred
}
tmp = complex(ZR, ZI) * complex(ZR, ZI)
CZR = real(tmp)
CZI = imag(tmp)
CZR = 0.25e0 * CZR
CZI = 0.25e0 * CZI
T1 = 0.25e0 * CAZ * CAZ
Ninety:
FR = (FR*AK + PR + QR) / BK
FI = (FI*AK + PI + QI) / BK
STR = 1.0e0 / (AK - DNU)
PR = PR * STR
PI = PI * STR
STR = 1.0e0 / (AK + DNU)
QR = QR * STR
QI = QI * STR
STR = CKR*CZR - CKI*CZI
RAK = 1.0e0 / AK
CKI = (CKR*CZI + CKI*CZR) * RAK
CKR = STR * RAK
S1R = CKR*FR - CKI*FI + S1R
S1I = CKR*FI + CKI*FR + S1I
STR = PR - FR*AK
STI = PI - FI*AK
S2R = CKR*STR - CKI*STI + S2R
S2I = CKR*STI + CKI*STR + S2I
A1 = A1 * T1 * RAK
BK = BK + AK + AK + 1.0e0
AK = AK + 1.0e0
if A1 > TOL {
goto Ninety
}
OneHundred:
KFLAG = 2
A1 = FNU + 1.0e0
AK = A1 * math.Abs(SMUR)
if AK > ALIM {
KFLAG = 3
}
STR = CSSR[KFLAG]
P2R = S2R * STR
P2I = S2I * STR
tmp = complex(P2R, P2I) * complex(RZR, RZI)
S2R = real(tmp)
S2I = imag(tmp)
S1R = S1R * STR
S1I = S1I * STR
if KODED == 1 {
goto TwoTen
}
tmp = cmplx.Exp(complex(ZR, ZI))
FR = real(tmp)
FI = imag(tmp)
tmp = complex(S1R, S1I) * complex(FR, FI)
S1R = real(tmp)
S1I = imag(tmp)
tmp = complex(S2R, S2I) * complex(FR, FI)
S2R = real(tmp)
S2I = imag(tmp)
goto TwoTen
// IFLAG=0 MEANS NO UNDERFLOW OCCURRED
// IFLAG=1 MEANS AN UNDERFLOW OCCURRED- COMPUTATION PROCEEDS WITH
// KODED=2 AND A TEST FOR ON SCALE VALUES IS MADE DURING FORWARD RECURSION
OneTen:
tmp = cmplx.Sqrt(complex(ZR, ZI))
STR = real(tmp)
STI = imag(tmp)
tmp = complex(RTHPI, CZEROI) / complex(STR, STI)
COEFR = real(tmp)
COEFI = imag(tmp)
KFLAG = 2
if KODED == 2 {
goto OneTwenty
}
if ZR > ALIM {
goto TwoNinety
}
STR = math.Exp(-ZR) * CSSR[KFLAG]
//sin, cos = math.Sincos(ZI)
STI = -STR * math.Sin(ZI)
STR = STR * math.Cos(ZI)
tmp = complex(COEFR, COEFI) * complex(STR, STI)
COEFR = real(tmp)
COEFI = imag(tmp)
OneTwenty:
if math.Abs(DNU) == 0.5e0 {
goto ThreeHundred
}
// MILLER ALGORITHM FOR CABS(Z)>R1.
AK = math.Cos(DPI * DNU)
AK = math.Abs(AK)
if AK == CZEROR {
goto ThreeHundred
}
FHS = math.Abs(0.25e0 - DNU2)
if FHS == CZEROR {
goto ThreeHundred
}
// COMPUTE R2=F(E). if CABS(Z)>=R2, USE FORWARD RECURRENCE TO
// DETERMINE THE BACKWARD INDEX K. R2=F(E) IS A STRAIGHT LINE ON
// 12<=E<=60. E IS COMPUTED FROM 2**(-E)=B**(1-I1MACH(14))=
// TOL WHERE B IS THE BASE OF THE ARITHMETIC.
T1 = float64(imach[14] - 1)
T1 = T1 * dmach[5] * 3.321928094e0
T1 = math.Max(T1, 12.0e0)
T1 = math.Min(T1, 60.0e0)
T2 = TTH*T1 - 6.0e0
if ZR != 0.0e0 {
goto OneThirty
}
T1 = HPI
goto OneFourty
OneThirty:
T1 = math.Atan(ZI / ZR)
T1 = math.Abs(T1)
OneFourty:
if T2 > CAZ {
goto OneSeventy
}
// FORWARD RECURRENCE LOOP WHEN CABS(Z)>=R2.
ETEST = AK / (DPI * CAZ * TOL)
FK = CONER
if ETEST < CONER {
goto OneEighty
}
FKS = CTWOR
CKR = CAZ + CAZ + CTWOR
P1R = CZEROR
P2R = CONER
for I = 1; I <= KMAX; I++ {
AK = FHS / FKS
CBR = CKR / (FK + CONER)
PTR = P2R
P2R = CBR*P2R - P1R*AK
P1R = PTR
CKR = CKR + CTWOR
FKS = FKS + FK + FK + CTWOR
FHS = FHS + FK + FK
FK = FK + CONER
STR = math.Abs(P2R) * FK
if ETEST < STR {
goto OneSixty
}
}
goto ThreeTen
OneSixty:
FK = FK + SPI*T1*math.Sqrt(T2/CAZ)
FHS = math.Abs(0.25 - DNU2)
goto OneEighty
OneSeventy:
// COMPUTE BACKWARD INDEX K FOR CABS(Z)<R2.
A2 = math.Sqrt(CAZ)
AK = FPI * AK / (TOL * math.Sqrt(A2))
AA = 3.0e0 * T1 / (1.0e0 + CAZ)
BB = 14.7e0 * T1 / (28.0e0 + CAZ)
AK = (math.Log(AK) + CAZ*math.Cos(AA)/(1.0e0+0.008e0*CAZ)) / math.Cos(BB)
FK = 0.12125e0*AK*AK/CAZ + 1.5e0
OneEighty:
// BACKWARD RECURRENCE LOOP FOR MILLER ALGORITHM.
K = int(float32(FK))
FK = float64(K)
FKS = FK * FK
P1R = CZEROR
P1I = CZEROI
P2R = TOL
P2I = CZEROI
CSR = P2R
CSI = P2I
for I = 1; I <= K; I++ {
A1 = FKS - FK
AK = (FKS + FK) / (A1 + FHS)
RAK = 2.0e0 / (FK + CONER)
CBR = (FK + ZR) * RAK
CBI = ZI * RAK
PTR = P2R
PTI = P2I
P2R = (PTR*CBR - PTI*CBI - P1R) * AK
P2I = (PTI*CBR + PTR*CBI - P1I) * AK
P1R = PTR
P1I = PTI
CSR = CSR + P2R
CSI = CSI + P2I
FKS = A1 - FK + CONER
FK = FK - CONER
}
// COMPUTE (P2/CS)=(P2/CABS(CS))*(CONJG(CS)/CABS(CS)) FOR BETTER SCALING.
TM = cmplx.Abs(complex(CSR, CSI))
PTR = 1.0e0 / TM
S1R = P2R * PTR
S1I = P2I * PTR
CSR = CSR * PTR
CSI = -CSI * PTR
tmp = complex(COEFR, COEFI) * complex(S1R, S1I)
STR = real(tmp)
STI = imag(tmp)
tmp = complex(STR, STI) * complex(CSR, CSI)
S1R = real(tmp)
S1I = imag(tmp)
if INU > 0 || N > 1 {
goto TwoHundred
}
ZDR = ZR
ZDI = ZI
if IFLAG == 1 {
goto TwoSeventy
}
goto TwoFourty
TwoHundred:
// COMPUTE P1/P2=(P1/CABS(P2)*CONJG(P2)/CABS(P2) FOR SCALING.
TM = cmplx.Abs(complex(P2R, P2I))
PTR = 1.0e0 / TM
P1R = P1R * PTR
P1I = P1I * PTR
P2R = P2R * PTR
P2I = -P2I * PTR
tmp = complex(P1R, P1I) * complex(P2R, P2I)
PTR = real(tmp)
PTI = imag(tmp)
STR = DNU + 0.5e0 - PTR
STI = -PTI
tmp = complex(STR, STI) / complex(ZR, ZI)
STR = real(tmp)
STI = imag(tmp)
STR = STR + 1.0e0
tmp = complex(STR, STI) * complex(S1R, S1I)
S2R = real(tmp)
S2I = imag(tmp)
// FORWARD RECURSION ON THE THREE TERM RECURSION WITH RELATION WITH
// SCALING NEAR EXPONENT EXTREMES ON KFLAG=1 OR KFLAG=3
TwoTen:
STR = DNU + 1.0e0
CKR = STR * RZR
CKI = STR * RZI
if N == 1 {
INU = INU - 1
}
if INU > 0 {
goto TwoTwenty
}
if N > 1 {
goto TwoFifteen
}
S1R = S2R
S1I = S2I
TwoFifteen:
ZDR = ZR
ZDI = ZI
if IFLAG == 1 {
goto TwoSeventy
}
goto TwoFourty
TwoTwenty:
INUB = 1
if IFLAG == 1 {
goto TwoSixtyOne
}
TwoTwentyFive:
P1R = CSRR[KFLAG]
ASCLE = BRY[KFLAG]
for I = INUB; I <= INU; I++ {
STR = S2R
STI = S2I
S2R = CKR*STR - CKI*STI + S1R
S2I = CKR*STI + CKI*STR + S1I
S1R = STR
S1I = STI
CKR = CKR + RZR
CKI = CKI + RZI
if KFLAG >= 3 {
continue
}
P2R = S2R * P1R
P2I = S2I * P1R
STR = math.Abs(P2R)
STI = math.Abs(P2I)
P2M = math.Max(STR, STI)
if P2M <= ASCLE {
continue
}
KFLAG = KFLAG + 1
ASCLE = BRY[KFLAG]
S1R = S1R * P1R
S1I = S1I * P1R
S2R = P2R
S2I = P2I
STR = CSSR[KFLAG]
S1R = S1R * STR
S1I = S1I * STR
S2R = S2R * STR
S2I = S2I * STR
P1R = CSRR[KFLAG]
}
if N != 1 {
goto TwoFourty
}
S1R = S2R
S1I = S2I
TwoFourty:
STR = CSRR[KFLAG]
YR[1] = S1R * STR
YI[1] = S1I * STR
if N == 1 {
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM, ALIM
}
YR[2] = S2R * STR
YI[2] = S2I * STR
if N == 2 {
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM, ALIM
}
KK = 2
TwoFifty:
KK = KK + 1
if KK > N {
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM, ALIM
}
P1R = CSRR[KFLAG]
ASCLE = BRY[KFLAG]
for I = KK; I <= N; I++ {
P2R = S2R
P2I = S2I
S2R = CKR*P2R - CKI*P2I + S1R
S2I = CKI*P2R + CKR*P2I + S1I
S1R = P2R
S1I = P2I
CKR = CKR + RZR
CKI = CKI + RZI
P2R = S2R * P1R
P2I = S2I * P1R
YR[I] = P2R
YI[I] = P2I
if KFLAG >= 3 {
continue
}
STR = math.Abs(P2R)
STI = math.Abs(P2I)
P2M = math.Max(STR, STI)
if P2M <= ASCLE {
continue
}
KFLAG = KFLAG + 1
ASCLE = BRY[KFLAG]
S1R = S1R * P1R
S1I = S1I * P1R
S2R = P2R
S2I = P2I
STR = CSSR[KFLAG]
S1R = S1R * STR
S1I = S1I * STR
S2R = S2R * STR
S2I = S2I * STR
P1R = CSRR[KFLAG]
}
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM, ALIM
// IFLAG=1 CASES, FORWARD RECURRENCE ON SCALED VALUES ON UNDERFLOW.
TwoSixtyOne:
HELIM = 0.5e0 * ELIM
ELM = math.Exp(-ELIM)
CELMR = ELM
ASCLE = BRY[1]
ZDR = ZR
ZDI = ZI
IC = -1
J = 2
for I = 1; I <= INU; I++ {
STR = S2R
STI = S2I
S2R = STR*CKR - STI*CKI + S1R
S2I = STI*CKR + STR*CKI + S1I
S1R = STR
S1I = STI
CKR = CKR + RZR
CKI = CKI + RZI
AS = cmplx.Abs(complex(S2R, S2I))
ALAS = math.Log(AS)
P2R = -ZDR + ALAS
if P2R < (-ELIM) {
goto TwoSixtyThree
}
tmp = cmplx.Log(complex(S2R, S2I))
STR = real(tmp)
STI = imag(tmp)
P2R = -ZDR + STR
P2I = -ZDI + STI
P2M = math.Exp(P2R) / TOL
// sin, cos = math.Sincos(P2I)
P1R = P2M * math.Cos(P2I)
P1I = P2M * math.Sin(P2I)
p = complex(P1R, P1I)
NW = Zuchk(p, ASCLE, TOL)
if NW != 0 {
goto TwoSixtyThree
}
J = 3 - J
CYR[J] = P1R
CYI[J] = P1I
if IC == (I - 1) {
goto TwoSixtyFour
}
IC = I
continue
TwoSixtyThree:
if ALAS < HELIM {
continue
}
ZDR = ZDR - ELIM
S1R = S1R * CELMR
S1I = S1I * CELMR
S2R = S2R * CELMR
S2I = S2I * CELMR
}
if N != 1 {
goto TwoSeventy
}
S1R = S2R
S1I = S2I
goto TwoSeventy
TwoSixtyFour:
KFLAG = 1
INUB = I + 1
S2R = CYR[J]
S2I = CYI[J]
J = 3 - J
S1R = CYR[J]
S1I = CYI[J]
if INUB <= INU {
goto TwoTwentyFive
}
if N != 1 {
goto TwoFourty
}
S1R = S2R
S1I = S2I
goto TwoFourty
TwoSeventy:
YR[1] = S1R
YI[1] = S1I
if N == 1 {
goto TwoEighty
}
YR[2] = S2R
YI[2] = S2I
TwoEighty:
ASCLE = BRY[1]
_, _, FNU, N, YR, YI, NZ, RZR, RZI, _, TOL, ELIM = Zkscl(ZDR, ZDI, FNU, N, YR, YI, RZR, RZI, ASCLE, TOL, ELIM)
INU = N - NZ
if INU <= 0 {
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM, ALIM
}
KK = NZ + 1
S1R = YR[KK]
S1I = YI[KK]
YR[KK] = S1R * CSRR[1]
YI[KK] = S1I * CSRR[1]
if INU == 1 {
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM, ALIM
}
KK = NZ + 2
S2R = YR[KK]
S2I = YI[KK]
YR[KK] = S2R * CSRR[1]
YI[KK] = S2I * CSRR[1]
if INU == 2 {
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM, ALIM
}
T2 = FNU + float64(float32(KK-1))
CKR = T2 * RZR
CKI = T2 * RZI
KFLAG = 1
goto TwoFifty
TwoNinety:
// SCALE BY math.Exp(Z), IFLAG = 1 CASES.
IFLAG = 1
KFLAG = 2
goto OneTwenty
// FNU=HALF ODD INTEGER CASE, DNU=-0.5
ThreeHundred:
S1R = COEFR
S1I = COEFI
S2R = COEFR
S2I = COEFI
goto TwoTen
ThreeTen:
NZ = -2
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL, ELIM, ALIM
}
// SET K FUNCTIONS TO ZERO ON UNDERFLOW, CONTINUE RECURRENCE
// ON SCALED FUNCTIONS UNTIL TWO MEMBERS COME ON SCALE, THEN
// return WITH MIN(NZ+2,N) VALUES SCALED BY 1/TOL.
func Zkscl(ZRR, ZRI, FNU float64, N int, YR, YI []float64, RZR, RZI, ASCLE, TOL, ELIM float64) (
ZRRout, ZRIout, FNUout float64, Nout int, YRout, YIout []float64, NZ int, RZRout, RZIout, ASCLEout, TOLout, ELIMout float64) {
var ACS, AS, CKI, CKR, CSI, CSR, FN, STR, S1I, S1R, S2I,
S2R, ZEROI, ZEROR, ZDR, ZDI, CELMR, ELM, HELIM, ALAS float64
var I, IC, KK, NN, NW int
var tmp, c complex128
var CYR, CYI [3]float64
var sin, cos float64
// DIMENSION YR(N), YI(N), CYR(2), CYI(2)
ZEROR = 0
ZEROI = 0
IC = 0
NN = min(2, N)
for I = 1; I <= NN; I++ {
S1R = YR[I]
S1I = YI[I]
CYR[I] = S1R
CYI[I] = S1I
AS = cmplx.Abs(complex(S1R, S1I))
ACS = -ZRR + math.Log(AS)
NZ = NZ + 1
YR[I] = ZEROR
YI[I] = ZEROI
if ACS < (-ELIM) {
continue
}
tmp = cmplx.Log(complex(S1R, S1I))
CSR = real(tmp)
CSI = imag(tmp)
CSR = CSR - ZRR
CSI = CSI - ZRI
STR = math.Exp(CSR) / TOL
// sin, cos = math.Sincos(CSI)
CSR = STR * math.Cos(CSI)
CSI = STR * math.Sin(CSI)
c = complex(CSR, CSI)
NW = Zuchk(c, ASCLE, TOL)
if NW != 0 {
continue
}
YR[I] = CSR
YI[I] = CSI
IC = I
NZ = NZ - 1
}
if N == 1 {
return ZRR, ZRI, FNU, N, YR, YI, NZ, RZR, RZI, ASCLE, TOL, ELIM
}
if IC > 1 {
goto Twenty
}
YR[1] = ZEROR
YI[1] = ZEROI
NZ = 2
Twenty:
if N == 2 {
return ZRR, ZRI, FNU, N, YR, YI, NZ, RZR, RZI, ASCLE, TOL, ELIM
}
if NZ == 0 {
return ZRR, ZRI, FNU, N, YR, YI, NZ, RZR, RZI, ASCLE, TOL, ELIM
}
FN = FNU + 1.0e0
CKR = FN * RZR
CKI = FN * RZI
S1R = CYR[1]
S1I = CYI[1]
S2R = CYR[2]
S2I = CYI[2]
HELIM = 0.5e0 * ELIM
ELM = math.Exp(-ELIM)
CELMR = ELM
ZDR = ZRR
ZDI = ZRI
// FIND TWO CONSECUTIVE Y VALUES ON SCALE. SCALE RECURRENCE IF
// S2 GETS LARGER THAN EXP(ELIM/2)
for I = 3; I <= N; I++ {
KK = I
CSR = S2R
CSI = S2I
S2R = CKR*CSR - CKI*CSI + S1R
S2I = CKI*CSR + CKR*CSI + S1I
S1R = CSR
S1I = CSI
CKR = CKR + RZR
CKI = CKI + RZI
AS = cmplx.Abs(complex(S2R, S2I))
ALAS = math.Log(AS)
ACS = -ZDR + ALAS
NZ = NZ + 1
YR[I] = ZEROR
YI[I] = ZEROI
if ACS < (-ELIM) {
goto TwentyFive
}
tmp = cmplx.Log(complex(S2R, S2I))
CSR = real(tmp)
CSI = imag(tmp)
CSR = CSR - ZDR
CSI = CSI - ZDI
STR = math.Exp(CSR) / TOL
sin, cos = math.Sincos(CSI)
CSR = STR * cos
CSI = STR * sin
c = complex(CSR, CSI)
NW = Zuchk(c, ASCLE, TOL)
if NW != 0 {
goto TwentyFive
}
YR[I] = CSR
YI[I] = CSI
NZ = NZ - 1
if IC == KK-1 {
goto Forty
}
IC = KK
continue
TwentyFive:
if ALAS < HELIM {
continue
}
ZDR = ZDR - ELIM
S1R = S1R * CELMR
S1I = S1I * CELMR
S2R = S2R * CELMR
S2I = S2I * CELMR
}
NZ = N
if IC == N {
NZ = N - 1
}
goto FourtyFive
Forty:
NZ = KK - 2
FourtyFive:
for I = 1; I <= NZ; I++ {
YR[I] = ZEROR
YI[I] = ZEROI
}
return ZRR, ZRI, FNU, N, YR, YI, NZ, RZR, RZI, ASCLE, TOL, ELIM
}
// Zuchk tests whether the magnitude of the real or imaginary part would
// underflow when y is scaled by tol.
//
// y enters as a scaled quantity whose magnitude is greater than
//
// 1e3 + 3*dmach(1)/tol
//
// y is accepted if the underflow is at least one precision below the magnitude
// of the largest component. Otherwise an underflow is assumed as the phase angle
// does not have sufficient accuracy.
func Zuchk(y complex128, scale, tol float64) int {
absR := math.Abs(real(y))
absI := math.Abs(imag(y))
minAbs := math.Min(absR, absI)
if minAbs > scale {
return 0
}
maxAbs := math.Max(absR, absI)
minAbs /= tol
if maxAbs < minAbs {
return 1
}
return 0
}
// ZACAI APPLIES THE ANALYTIC CONTINUATION FORMULA
//
// K(FNU,ZN*EXP(MP))=K(FNU,ZN)*EXP(-MP*FNU) - MP*I(FNU,ZN)
// MP=PI*MR*CMPLX(0.0,1.0)
//
// TO CONTINUE THE K FUNCTION FROM THE RIGHT HALF TO THE LEFT
// HALF Z PLANE FOR USE WITH ZAIRY WHERE FNU=1/3 OR 2/3 AND N=1.
// ZACAI IS THE SAME AS ZACON WITH THE PARTS FOR LARGER ORDERS AND
// RECURRENCE REMOVED. A RECURSIVE CALL TO ZACON CAN RESULT if ZACON
// IS CALLED FROM ZAIRY.
func Zacai(ZR, ZI, FNU float64, KODE, MR, N int, YR, YI []float64, RL, TOL, ELIM, ALIM float64) (
ZRout, ZIout, FNUout float64, KODEout, MRout, Nout int, YRout, YIout []float64, NZ int, RLout, TOLout, ELIMout, ALIMout float64) {
var ARG, ASCLE, AZ, CSGNR, CSGNI, CSPNR,
CSPNI, C1R, C1I, C2R, C2I, DFNU, FMR, PI,
SGN, YY, ZNR, ZNI float64
var INU, IUF, NN, NW int
var zn, c1, c2, z complex128
var y []complex128
//var sin, cos float64
CYR := []float64{math.NaN(), 0, 0}
CYI := []float64{math.NaN(), 0, 0}
PI = math.Pi
ZNR = -ZR
ZNI = -ZI
AZ = cmplx.Abs(complex(ZR, ZI))
NN = N
DFNU = FNU + float64(float32(N-1))
if AZ <= 2.0e0 {
goto Ten
}
if AZ*AZ*0.25 > DFNU+1.0e0 {
goto Twenty
}
Ten:
// POWER SERIES FOR THE I FUNCTION.
z = complex(ZNR, ZNI)
y = make([]complex128, len(YR))
for i, v := range YR {
y[i] = complex(v, YI[i])
}
Zseri(z, FNU, KODE, NN, y[1:], TOL, ELIM, ALIM)
for i, v := range y {
YR[i] = real(v)
YI[i] = imag(v)
}
goto Forty
Twenty:
if AZ < RL {
goto Thirty
}
// ASYMPTOTIC EXPANSION FOR LARGE Z FOR THE I FUNCTION.
ZNR, ZNI, FNU, KODE, _, YR, YI, NW, RL, TOL, ELIM, ALIM = Zasyi(ZNR, ZNI, FNU, KODE, NN, YR, YI, RL, TOL, ELIM, ALIM)
if NW < 0 {
goto Eighty
}
goto Forty
Thirty:
// MILLER ALGORITHM NORMALIZED BY THE SERIES FOR THE I FUNCTION
ZNR, ZNI, FNU, KODE, _, YR, YI, NW, TOL = Zmlri(ZNR, ZNI, FNU, KODE, NN, YR, YI, TOL)
if NW < 0 {
goto Eighty
}
Forty:
// ANALYTIC CONTINUATION TO THE LEFT HALF PLANE FOR THE K FUNCTION.
ZNR, ZNI, FNU, KODE, _, CYR, CYI, NW, TOL, ELIM, ALIM = Zbknu(ZNR, ZNI, FNU, KODE, 1, CYR, CYI, TOL, ELIM, ALIM)
if NW != 0 {
goto Eighty
}
FMR = float64(float32(MR))
SGN = -math.Copysign(PI, FMR)
CSGNR = 0.0e0
CSGNI = SGN
if KODE == 1 {
goto Fifty
}
YY = -ZNI
//sin, cos = math.Sincos(YY)
CSGNR = -CSGNI * math.Sin(YY)
CSGNI = CSGNI * math.Cos(YY)
Fifty:
// CALCULATE CSPN=EXP(FNU*PI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
// WHEN FNU IS LARGE
INU = int(float32(FNU))
ARG = (FNU - float64(float32(INU))) * SGN
//sin, cos = math.Sincos(ARG)
CSPNR = math.Cos(ARG)
CSPNI = math.Sin(ARG)
if INU%2 == 0 {
goto Sixty
}
CSPNR = -CSPNR
CSPNI = -CSPNI
Sixty:
C1R = CYR[1]
C1I = CYI[1]
C2R = YR[1]
C2I = YI[1]
if KODE == 1 {
goto Seventy
}
IUF = 0
ASCLE = 1.0e+3 * dmach[1] / TOL
zn = complex(ZNR, ZNI)
c1 = complex(C1R, C1I)
c2 = complex(C2R, C2I)
c1, c2, NW, _ = Zs1s2(zn, c1, c2, ASCLE, ALIM, IUF)
C1R = real(c1)
C1I = imag(c1)
C2R = real(c2)
C2I = imag(c2)
NZ = NZ + NW
Seventy:
YR[1] = CSPNR*C1R - CSPNI*C1I + CSGNR*C2R - CSGNI*C2I
YI[1] = CSPNR*C1I + CSPNI*C1R + CSGNR*C2I + CSGNI*C2R
return ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, RL, TOL, ELIM, ALIM
Eighty:
NZ = -1
if NW == -2 {
NZ = -2
}
return ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, RL, TOL, ELIM, ALIM
}
// ZASYI COMPUTES THE I BESSEL FUNCTION FOR REAL(Z)>=0.0 BY
// MEANS OF THE ASYMPTOTIC EXPANSION FOR LARGE CABS(Z) IN THE
// REGION CABS(Z)>MAX(RL,FNU*FNU/2). NZ=0 IS A NORMAL return.
// NZ<0 INDICATES AN OVERFLOW ON KODE=1.
func Zasyi(ZR, ZI, FNU float64, KODE, N int, YR, YI []float64, RL, TOL, ELIM, ALIM float64) (
ZRout, ZIout, FNUout float64, KODEout, Nout int, YRout, YIout []float64, NZ int, RLout, TOLout, ELIMout, ALIMout float64) {
var AA, AEZ, AK, AK1I, AK1R, ARG, ARM, ATOL,
AZ, BB, BK, CKI, CKR, CONEI, CONER, CS1I, CS1R, CS2I, CS2R, CZI,
CZR, DFNU, DKI, DKR, DNU2, EZI, EZR, FDN, PI, P1I,
P1R, RAZ, RTPI, RTR1, RZI, RZR, S, SGN, SQK, STI, STR, S2I,
S2R, TZI, TZR, ZEROI, ZEROR float64
var I, IB, IL, INU, J, JL, K, KODED, M, NN int
var tmp complex128
// var sin, cos float64
PI = math.Pi
RTPI = 0.159154943091895336e0
ZEROR = 0
ZEROI = 0
CONER = 1
CONEI = 0
AZ = cmplx.Abs(complex(ZR, ZI))
ARM = 1.0e3 * dmach[1]
RTR1 = math.Sqrt(ARM)
IL = min(2, N)
DFNU = FNU + float64(float32(N-IL))
// OVERFLOW TEST
RAZ = 1.0e0 / AZ
STR = ZR * RAZ
STI = -ZI * RAZ
AK1R = RTPI * STR * RAZ
AK1I = RTPI * STI * RAZ
tmp = cmplx.Sqrt(complex(AK1R, AK1I))
AK1R = real(tmp)
AK1I = imag(tmp)
CZR = ZR
CZI = ZI
if KODE != 2 {
goto Ten
}
CZR = ZEROR
CZI = ZI
Ten:
if math.Abs(CZR) > ELIM {
goto OneHundred
}
DNU2 = DFNU + DFNU
KODED = 1
if (math.Abs(CZR) > ALIM) && (N > 2) {
goto Twenty
}
KODED = 0
tmp = cmplx.Exp(complex(CZR, CZI))
STR = real(tmp)
STI = imag(tmp)
tmp = complex(AK1R, AK1I) * complex(STR, STI)
AK1R = real(tmp)
AK1I = imag(tmp)
Twenty:
FDN = 0.0e0
if DNU2 > RTR1 {
FDN = DNU2 * DNU2
}
EZR = ZR * 8.0e0
EZI = ZI * 8.0e0
// WHEN Z IS IMAGINARY, THE ERROR TEST MUST BE MADE RELATIVE TO THE
// FIRST RECIPROCAL POWER SINCE THIS IS THE LEADING TERM OF THE
// EXPANSION FOR THE IMAGINARY PART.
AEZ = 8.0e0 * AZ
S = TOL / AEZ
JL = int(float32(RL+RL)) + 2
P1R = ZEROR
P1I = ZEROI
if ZI == 0.0e0 {
goto Thirty
}
// CALCULATE EXP(PI*(0.5+FNU+N-IL)*I) TO MINIMIZE LOSSES OF
// SIGNIFICANCE WHEN FNU OR N IS LARGE
INU = int(float32(FNU))
ARG = (FNU - float64(float32(INU))) * PI
INU = INU + N - IL
//sin, cos = math.Sincos(ARG)
AK = -math.Sin(ARG)
BK = math.Cos(ARG)
if ZI < 0.0e0 {
BK = -BK
}
P1R = AK
P1I = BK
if INU%2 == 0 {
goto Thirty
}
P1R = -P1R
P1I = -P1I
Thirty:
for K = 1; K <= IL; K++ {
SQK = FDN - 1.0e0
ATOL = S * math.Abs(SQK)
SGN = 1.0e0
CS1R = CONER
CS1I = CONEI
CS2R = CONER
CS2I = CONEI
CKR = CONER
CKI = CONEI
AK = 0.0e0
AA = 1.0e0
BB = AEZ
DKR = EZR
DKI = EZI
// TODO(btracey): This loop is executed tens of thousands of times. Why?
// is that really necessary?
for J = 1; J <= JL; J++ {
tmp = complex(CKR, CKI) / complex(DKR, DKI)
STR = real(tmp)
STI = imag(tmp)
CKR = STR * SQK
CKI = STI * SQK
CS2R = CS2R + CKR
CS2I = CS2I + CKI
SGN = -SGN
CS1R = CS1R + CKR*SGN
CS1I = CS1I + CKI*SGN
DKR = DKR + EZR
DKI = DKI + EZI
AA = AA * math.Abs(SQK) / BB
BB = BB + AEZ
AK = AK + 8.0e0
SQK = SQK - AK
if AA <= ATOL {
goto Fifty
}
}
goto OneTen
Fifty:
S2R = CS1R
S2I = CS1I
if ZR+ZR >= ELIM {
goto Sixty
}
TZR = ZR + ZR
TZI = ZI + ZI
tmp = cmplx.Exp(complex(-TZR, -TZI))
STR = real(tmp)
STI = imag(tmp)
tmp = complex(STR, STI) * complex(P1R, P1I)
STR = real(tmp)
STI = imag(tmp)
tmp = complex(STR, STI) * complex(CS2R, CS2I)
STR = real(tmp)
STI = imag(tmp)
S2R = S2R + STR
S2I = S2I + STI
Sixty:
FDN = FDN + 8.0e0*DFNU + 4.0e0
P1R = -P1R
P1I = -P1I
M = N - IL + K
YR[M] = S2R*AK1R - S2I*AK1I
YI[M] = S2R*AK1I + S2I*AK1R
}
if N <= 2 {
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, RL, TOL, ELIM, ALIM
}
NN = N
K = NN - 2
AK = float64(float32(K))
STR = ZR * RAZ
STI = -ZI * RAZ
RZR = (STR + STR) * RAZ
RZI = (STI + STI) * RAZ
IB = 3
for I = IB; I <= NN; I++ {
YR[K] = (AK+FNU)*(RZR*YR[K+1]-RZI*YI[K+1]) + YR[K+2]
YI[K] = (AK+FNU)*(RZR*YI[K+1]+RZI*YR[K+1]) + YI[K+2]
AK = AK - 1.0e0
K = K - 1
}
if KODED == 0 {
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, RL, TOL, ELIM, ALIM
}
tmp = cmplx.Exp(complex(CZR, CZI))
CKR = real(tmp)
CKI = imag(tmp)
for I = 1; I <= NN; I++ {
STR = YR[I]*CKR - YI[I]*CKI
YI[I] = YR[I]*CKI + YI[I]*CKR
YR[I] = STR
}
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, RL, TOL, ELIM, ALIM
OneHundred:
NZ = -1
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, RL, TOL, ELIM, ALIM
OneTen:
NZ = -2
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, RL, TOL, ELIM, ALIM
}
// ZMLRI COMPUTES THE I BESSEL FUNCTION FOR RE(Z)>=0.0 BY THE
// MILLER ALGORITHM NORMALIZED BY A NEUMANN SERIES.
func Zmlri(ZR, ZI, FNU float64, KODE, N int, YR, YI []float64, TOL float64) (
ZRout, ZIout, FNUout float64, KODEout, Nout int, YRout, YIout []float64, NZ int, TOLout float64) {
var ACK, AK, AP, AT, AZ, BK, CKI, CKR, CNORMI,
CNORMR, CONEI, CONER, FKAP, FKK, FLAM, FNF, PTI, PTR, P1I,
P1R, P2I, P2R, RAZ, RHO, RHO2, RZI, RZR, SCLE, STI, STR, SUMI,
SUMR, TFNF, TST, ZEROI, ZEROR float64
var I, IAZ, IDUM, IFNU, INU, ITIME, K, KK, KM, M int
var tmp complex128
ZEROR = 0
ZEROI = 0
CONER = 1
CONEI = 0
SCLE = dmach[1] / TOL
AZ = cmplx.Abs(complex(ZR, ZI))
IAZ = int(float32(AZ))
IFNU = int(float32(FNU))
INU = IFNU + N - 1
AT = float64(float32(IAZ)) + 1.0e0
RAZ = 1.0e0 / AZ
STR = ZR * RAZ
STI = -ZI * RAZ
CKR = STR * AT * RAZ
CKI = STI * AT * RAZ
RZR = (STR + STR) * RAZ
RZI = (STI + STI) * RAZ
P1R = ZEROR
P1I = ZEROI
P2R = CONER
P2I = CONEI
ACK = (AT + 1.0e0) * RAZ
RHO = ACK + math.Sqrt(ACK*ACK-1.0e0)
RHO2 = RHO * RHO
TST = (RHO2 + RHO2) / ((RHO2 - 1.0e0) * (RHO - 1.0e0))
TST = TST / TOL
// COMPUTE RELATIVE TRUNCATION ERROR INDEX FOR SERIES.
//fmt.Println("before loop", P2R, P2I, CKR, CKI, RZR, RZI, TST, AK)
AK = AT
for I = 1; I <= 80; I++ {
PTR = P2R
PTI = P2I
P2R = P1R - (CKR*PTR - CKI*PTI)
P2I = P1I - (CKI*PTR + CKR*PTI)
P1R = PTR
P1I = PTI
CKR = CKR + RZR
CKI = CKI + RZI
AP = cmplx.Abs(complex(P2R, P2I))
if AP > TST*AK*AK {
goto Twenty
}
AK = AK + 1.0e0
}
goto OneTen
Twenty:
I = I + 1
K = 0
if INU < IAZ {
goto Forty
}
// COMPUTE RELATIVE TRUNCATION ERROR FOR RATIOS.
P1R = ZEROR
P1I = ZEROI
P2R = CONER
P2I = CONEI
AT = float64(float32(INU)) + 1.0e0
STR = ZR * RAZ
STI = -ZI * RAZ
CKR = STR * AT * RAZ
CKI = STI * AT * RAZ
ACK = AT * RAZ
TST = math.Sqrt(ACK / TOL)
ITIME = 1
for K = 1; K <= 80; K++ {
PTR = P2R
PTI = P2I
P2R = P1R - (CKR*PTR - CKI*PTI)
P2I = P1I - (CKR*PTI + CKI*PTR)
P1R = PTR
P1I = PTI
CKR = CKR + RZR
CKI = CKI + RZI
AP = cmplx.Abs(complex(P2R, P2I))
if AP < TST {
continue
}
if ITIME == 2 {
goto Forty
}
ACK = cmplx.Abs(complex(CKR, CKI))
FLAM = ACK + math.Sqrt(ACK*ACK-1.0e0)
FKAP = AP / cmplx.Abs(complex(P1R, P1I))
RHO = math.Min(FLAM, FKAP)
TST = TST * math.Sqrt(RHO/(RHO*RHO-1.0e0))
ITIME = 2
}
goto OneTen
Forty:
// BACKWARD RECURRENCE AND SUM NORMALIZING RELATION.
K = K + 1
KK = max(I+IAZ, K+INU)
FKK = float64(float32(KK))
P1R = ZEROR
P1I = ZEROI
// SCALE P2 AND SUM BY SCLE.
P2R = SCLE
P2I = ZEROI
FNF = FNU - float64(float32(IFNU))
TFNF = FNF + FNF
BK = dgamln(FKK+TFNF+1.0e0, IDUM) - dgamln(FKK+1.0e0, IDUM) - dgamln(TFNF+1.0e0, IDUM)
BK = math.Exp(BK)
SUMR = ZEROR
SUMI = ZEROI
KM = KK - INU
for I = 1; I <= KM; I++ {
PTR = P2R
PTI = P2I
P2R = P1R + (FKK+FNF)*(RZR*PTR-RZI*PTI)
P2I = P1I + (FKK+FNF)*(RZI*PTR+RZR*PTI)
P1R = PTR
P1I = PTI
AK = 1.0e0 - TFNF/(FKK+TFNF)
ACK = BK * AK
SUMR = SUMR + (ACK+BK)*P1R
SUMI = SUMI + (ACK+BK)*P1I
BK = ACK
FKK = FKK - 1.0e0
}
YR[N] = P2R
YI[N] = P2I
if N == 1 {
goto Seventy
}
for I = 2; I <= N; I++ {
PTR = P2R
PTI = P2I
P2R = P1R + (FKK+FNF)*(RZR*PTR-RZI*PTI)
P2I = P1I + (FKK+FNF)*(RZI*PTR+RZR*PTI)
P1R = PTR
P1I = PTI
AK = 1.0e0 - TFNF/(FKK+TFNF)
ACK = BK * AK
SUMR = SUMR + (ACK+BK)*P1R
SUMI = SUMI + (ACK+BK)*P1I
BK = ACK
FKK = FKK - 1.0e0
M = N - I + 1
YR[M] = P2R
YI[M] = P2I
}
Seventy:
if IFNU <= 0 {
goto Ninety
}
for I = 1; I <= IFNU; I++ {
PTR = P2R
PTI = P2I
P2R = P1R + (FKK+FNF)*(RZR*PTR-RZI*PTI)
P2I = P1I + (FKK+FNF)*(RZR*PTI+RZI*PTR)
P1R = PTR
P1I = PTI
AK = 1.0e0 - TFNF/(FKK+TFNF)
ACK = BK * AK
SUMR = SUMR + (ACK+BK)*P1R
SUMI = SUMI + (ACK+BK)*P1I
BK = ACK
FKK = FKK - 1.0e0
}
Ninety:
PTR = ZR
PTI = ZI
if KODE == 2 {
PTR = ZEROR
}
tmp = cmplx.Log(complex(RZR, RZI))
STR = real(tmp)
STI = imag(tmp)
P1R = -FNF*STR + PTR
P1I = -FNF*STI + PTI
AP = dgamln(1.0e0+FNF, IDUM)
PTR = P1R - AP
PTI = P1I
// THE DIVISION CEXP(PT)/(SUM+P2) IS ALTERED TO AVOID OVERFLOW
// IN THE DENOMINATOR BY SQUARING LARGE QUANTITIES.
P2R = P2R + SUMR
P2I = P2I + SUMI
AP = cmplx.Abs(complex(P2R, P2I))
P1R = 1.0e0 / AP
tmp = cmplx.Exp(complex(PTR, PTI))
STR = real(tmp)
STI = imag(tmp)
CKR = STR * P1R
CKI = STI * P1R
PTR = P2R * P1R
PTI = -P2I * P1R
tmp = complex(CKR, CKI) * complex(PTR, PTI)
CNORMR = real(tmp)
CNORMI = imag(tmp)
for I = 1; I <= N; I++ {
STR = YR[I]*CNORMR - YI[I]*CNORMI
YI[I] = YR[I]*CNORMI + YI[I]*CNORMR
YR[I] = STR
}
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL
OneTen:
NZ = -2
return ZR, ZI, FNU, KODE, N, YR, YI, NZ, TOL
}
// Zseri computes the I bessel function for real(z) >= 0 by means of the power
// series for large |z| in the region |z| <= 2*sqrt(fnu+1).
//
// nz = 0 is a normal return. nz > 0 means that the last nz components were set
// to zero due to underflow. nz < 0 means that underflow occurred, but the
// condition |z| <= 2*sqrt(fnu+1) was violated and the computation must be
// completed in another routine with n -= abs(nz).
func Zseri(z complex128, fnu float64, kode, n int, y []complex128, tol, elim, alim float64) (nz int) {
// TODO(btracey): The original fortran line is "ARM = 1.0D+3*D1MACH(1)". Evidently, in Fortran
// this is interpreted as one to the power of +3*D1MACH(1). While it is possible
// this was intentional, it seems unlikely.
arm := 1000 * dmach[1]
az := cmplx.Abs(z)
if az < arm {
for i := 0; i < n; i++ {
y[i] = 0
}
if fnu == 0 {
y[0] = 1
n--
}
if az == 0 {
return 0
}
return n
}
hz := 0.5 * z
var cz complex128
var acz float64
if az > math.Sqrt(arm) {
cz = hz * hz
acz = cmplx.Abs(cz)
}
NN := n
ck := cmplx.Log(hz)
var ak1 complex128
for {
dfnu := fnu + float64(NN-1)
// Underflow test.
ak1 = ck * complex(dfnu, 0)
ak := dgamln(dfnu+1, 0)
ak1 -= complex(ak, 0)
if kode == 2 {
ak1 -= complex(real(z), 0)
}
if real(ak1) > -elim {
break
}
nz++
y[NN-1] = 0
if acz > dfnu {
// Return with nz < 0 if abs(Z*Z/4)>fnu+u-nz-1 complete the calculation
// in cbinu with n = n - abs(nz).
nz *= -1
return nz
}
NN--
if NN == 0 {
return nz
}
}
crscr := 1.0
var flag int
var scale float64
aa := real(ak1)
if aa <= -alim {
flag = 1
crscr = tol
scale = arm / tol
aa -= math.Log(tol)
}
var w [2]complex128
for {
coef := cmplx.Exp(complex(aa, imag(ak1)))
atol := tol * acz / (fnu + float64(NN))
for i := 0; i < min(2, NN); i++ {
FNUP := fnu + float64(NN-i)
s1 := 1 + 0i
if acz >= tol*FNUP {
ak2 := 1 + 0i
ak := FNUP + 2
S := FNUP
scl := 2.0
first := true
for first || scl > atol {
ak2 = ak2 * cz * complex(1/S, 0)
scl *= acz / S
s1 += ak2
S += ak
ak += 2
first = false
}
}
s2 := s1 * coef
w[i] = s2
if flag == 1 {
if Zuchk(s2, scale, tol) != 0 {
var full bool
var dfnu float64
// This code is similar to the code that exists above. The
// code copying is here because the original Fortran used
// a goto to solve the loop-and-a-half problem. Removing the
// goto makes the behavior of the function and variable scoping
// much clearer, but requires copying this code due to Go's
// goto rules.
for {
if full {
dfnu = fnu + float64(NN-1)
// Underflow test.
ak1 = ck * complex(dfnu, 0)
ak1 -= complex(dgamln(dfnu+1, 0), 0)
if kode == 2 {
ak1 -= complex(real(z), 0)
}
if real(ak1) > -elim {
break
}
} else {
full = true
}
nz++
y[NN-1] = 0
if acz > dfnu {
// Return with nz < 0 if abs(Z*Z/4)>fnu+u-nz-1 complete the calculation
// in cbinu with n = n - abs(nz).
nz *= -1
return nz
}
NN--
if NN == 0 {
return nz
}
}
continue
}
}
y[NN-i-1] = s2 * complex(crscr, 0)
coef /= hz
coef *= complex(FNUP-1, 0)
}
break
}
if NN <= 2 {
return nz
}
rz := complex(2*real(z)/(az*az), -2*imag(z)/(az*az))
if flag == 0 {
for i := NN - 3; i >= 0; i-- {
y[i] = complex(float64(i+1)+fnu, 0)*rz*y[i+1] + y[i+2]
}
return nz
}
// exp(-alim)=exp(-elim)/tol=approximately one digit of precision above the
// underflow limit, which equals scale = dmach[1)*SS*1e3.
s1 := w[0]
s2 := w[1]
for K := NN - 3; K >= 0; K-- {
s1, s2 = s2, s1+complex(float64(K+1)+fnu, 0)*(rz*s2)
ck := s2 * complex(crscr, 0)
y[K] = ck
if cmplx.Abs(ck) > scale {
for ; K >= 0; K-- {
y[K] = complex(float64(K+1)+fnu, 0)*rz*y[K+1] + y[K+2]
}
return nz
}
}
return nz
}
// Zs1s2 tests for a possible underflow resulting from the addition of the I and
// K functions in the analytic continuation formula where s1 == K function and
// s2 == I function.
//
// When kode == 1, the I and K functions are different orders of magnitude.
//
// When kode == 2, they may both be of the same order of magnitude, but the maximum
// must be at least one precision above the underflow limit.
func Zs1s2(zr, s1, s2 complex128, scale, lim float64, iuf int) (s1o, s2o complex128, nz, iufo int) {
if s1 == 0 || math.Log(cmplx.Abs(s1))-2*real(zr) < -lim {
if cmplx.Abs(s2) > scale {
return 0, s2, 0, iuf
}
return 0, 0, 1, 0
}
// TODO(btracey): Written like this for numerical rounding reasons.
// Fix once we're sure other changes are correct.
s1 = cmplx.Exp(cmplx.Log(s1) - zr - zr)
if math.Max(cmplx.Abs(s1), cmplx.Abs(s2)) > scale {
return s1, s2, 0, iuf + 1
}
return 0, 0, 1, 0
}
func dgamln(z float64, ierr int) float64 {
//return amoslib.DgamlnFort(z)
// Go implementation.
if z < 0 {
return 0
}
a2, _ := math.Lgamma(z)
return a2
}
|