1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
* Cephes Math Library Release 2.4: March,1996
* Copyright 1984, 1996 by Stephen L. Moshier
*/
package cephes
import "math"
// Incbi computes the inverse of the regularized incomplete beta integral.
func Incbi(aa, bb, yy0 float64) float64 {
var a, b, y0, d, y, x, x0, x1, lgm, yp, di, dithresh, yl, yh, xt float64
var i, rflg, dir, nflg int
if yy0 <= 0 {
return (0.0)
}
if yy0 >= 1.0 {
return (1.0)
}
x0 = 0.0
yl = 0.0
x1 = 1.0
yh = 1.0
nflg = 0
if aa <= 1.0 || bb <= 1.0 {
dithresh = 1.0e-6
rflg = 0
a = aa
b = bb
y0 = yy0
x = a / (a + b)
y = Incbet(a, b, x)
goto ihalve
} else {
dithresh = 1.0e-4
}
// Approximation to inverse function
yp = -Ndtri(yy0)
if yy0 > 0.5 {
rflg = 1
a = bb
b = aa
y0 = 1.0 - yy0
yp = -yp
} else {
rflg = 0
a = aa
b = bb
y0 = yy0
}
lgm = (yp*yp - 3.0) / 6.0
x = 2.0 / (1.0/(2.0*a-1.0) + 1.0/(2.0*b-1.0))
d = yp*math.Sqrt(x+lgm)/x - (1.0/(2.0*b-1.0)-1.0/(2.0*a-1.0))*(lgm+5.0/6.0-2.0/(3.0*x))
d = 2.0 * d
if d < minLog {
// mtherr("incbi", UNDERFLOW)
x = 0
goto done
}
x = a / (a + b*math.Exp(d))
y = Incbet(a, b, x)
yp = (y - y0) / y0
if math.Abs(yp) < 0.2 {
goto newt
}
/* Resort to interval halving if not close enough. */
ihalve:
dir = 0
di = 0.5
for i = 0; i < 100; i++ {
if i != 0 {
x = x0 + di*(x1-x0)
if x == 1.0 {
x = 1.0 - machEp
}
if x == 0.0 {
di = 0.5
x = x0 + di*(x1-x0)
if x == 0.0 {
// mtherr("incbi", UNDERFLOW)
goto done
}
}
y = Incbet(a, b, x)
yp = (x1 - x0) / (x1 + x0)
if math.Abs(yp) < dithresh {
goto newt
}
yp = (y - y0) / y0
if math.Abs(yp) < dithresh {
goto newt
}
}
if y < y0 {
x0 = x
yl = y
if dir < 0 {
dir = 0
di = 0.5
} else if dir > 3 {
di = 1.0 - (1.0-di)*(1.0-di)
} else if dir > 1 {
di = 0.5*di + 0.5
} else {
di = (y0 - y) / (yh - yl)
}
dir += 1
if x0 > 0.75 {
if rflg == 1 {
rflg = 0
a = aa
b = bb
y0 = yy0
} else {
rflg = 1
a = bb
b = aa
y0 = 1.0 - yy0
}
x = 1.0 - x
y = Incbet(a, b, x)
x0 = 0.0
yl = 0.0
x1 = 1.0
yh = 1.0
goto ihalve
}
} else {
x1 = x
if rflg == 1 && x1 < machEp {
x = 0.0
goto done
}
yh = y
if dir > 0 {
dir = 0
di = 0.5
} else if dir < -3 {
di = di * di
} else if dir < -1 {
di = 0.5 * di
} else {
di = (y - y0) / (yh - yl)
}
dir -= 1
}
}
// mtherr("incbi", PLOSS)
if x0 >= 1.0 {
x = 1.0 - machEp
goto done
}
if x <= 0.0 {
// mtherr("incbi", UNDERFLOW)
x = 0.0
goto done
}
newt:
if nflg > 0 {
goto done
}
nflg = 1
lgm = lgam(a+b) - lgam(a) - lgam(b)
for i = 0; i < 8; i++ {
/* Compute the function at this point. */
if i != 0 {
y = Incbet(a, b, x)
}
if y < yl {
x = x0
y = yl
} else if y > yh {
x = x1
y = yh
} else if y < y0 {
x0 = x
yl = y
} else {
x1 = x
yh = y
}
if x == 1.0 || x == 0.0 {
break
}
/* Compute the derivative of the function at this point. */
d = (a-1.0)*math.Log(x) + (b-1.0)*math.Log(1.0-x) + lgm
if d < minLog {
goto done
}
if d > maxLog {
break
}
d = math.Exp(d)
/* Compute the step to the next approximation of x. */
d = (y - y0) / d
xt = x - d
if xt <= x0 {
y = (x - x0) / (x1 - x0)
xt = x0 + 0.5*y*(x-x0)
if xt <= 0.0 {
break
}
}
if xt >= x1 {
y = (x1 - x) / (x1 - x0)
xt = x1 - 0.5*y*(x1-x)
if xt >= 1.0 {
break
}
}
x = xt
if math.Abs(d/x) < 128.0*machEp {
goto done
}
}
/* Did not converge. */
dithresh = 256.0 * machEp
goto ihalve
done:
if rflg > 0 {
if x <= machEp {
x = 1.0 - machEp
} else {
x = 1.0 - x
}
}
return (x)
}
func lgam(a float64) float64 {
lg, _ := math.Lgamma(a)
return lg
}
|